Wideband CDMA waveforms for large MIMO sonar systems

Yan Pailhas, Yvan Petillot
Ocean Systems Laboratory
Heriot Watt University
Edinburgh, UK, EH14 4AS
Email: Y.Pailhas@hw.ac.uk

Abstract—Multiple Input Multiple Output (MIMO) sonar systems offer new perspectives for target detection and underwater surveillance. The inherent principle of MIMO relies on transmitting several pulses from different transmitters. The MIMO waveform strategy can vary from applications to applications. But among the waveform space, orthogonal waveforms are arguably the most important sub-space. Purely orthogonal waveforms do not exist, and several approximations have been attempted for MIMO radar applications. These approaches include separating the waveforms in the time domain, the frequency domain or using pseudo orthogonal codes. In this paper we discuss the different radar waveform approaches from a sonar point of view and propose a novel CDMA (code division multiple access) waveform design, more suitable for large wideband MIMO systems.

Keywords—MIMO sonar systems, MIMO waveform design, CDMA, wideband sonar.

I. INTRODUCTION

MIMO stands for Multiple Inputs Multiple Outputs. It refers to a structure with spatially distributed transmitters and receivers. MIMO systems have been widely investigated during the last two decades for wireless communications. Such systems have then been developed for radar applications [1], [2]. MIMO have recently gained interest in the underwater acoustic community because of certain benefits over traditional systems such as increase resolution or increase in signal to clutter ratio to name a few.

The MIMO concept relies on multiple transmitters \(N_t\) sending unique and orthogonal waveforms through the environment. Several receivers \(N_r\) then capture the environment, the targets or the clutter response. At each receiver node, the total signal is filtered to separate the different transmitter signal contribution. Accessing the \(N_t \times N_r\) signals then requires the orthogonality of the waveform set. Purely orthogonal waveforms do not exist, and different approaches were developed to minimise the waveform cross-correlation. Such methods include TDMA (time division multiple access) where waveforms share the same frequency band, but at different times, FDMA (frequency division multiple access) where waveforms occupy different frequencies at the same time, or CDMA (code division multiple access) where waveforms share the same frequencies at the same time.

In this paper we review the three main classes of orthogonal waveforms proposed for radar applications. We examine their implications and restrictions for sonar systems. We finally propose a novel CDMA design: the IMCS (interlaced micro-chirp series) which suits large MIMO sonar systems and transducer constraints. This paper is organised as follows:

In section II we present the MIMO sonar formulation. We then demonstrate some of the MIMO sonar capabilities that can achieve using orthogonal waveforms: target recognition and super resolution. In section III we present an overview of the different strategy for radar MIMO waveform design and discuss their practicality for sonar applications. Finally in section IV, we propose the CDMA IMCS waveforms for sonar applications.

II. MIMO SONAR SYSTEMS

A. MIMO sonar formulation

We first present the MIMO formulation for the finite scatterer target model. A target is represented here with \(Q\) scattering points spatially distributed. Let \(\{X_q\}_{q \in [1,Q]}\) be their locations. The reflectivity of each scattering point is represented by the complex random variable \(\zeta_q\). All the \(\zeta_q\) are assumed to be zero-mean, independent and identically distributed with a variance of \(E[|\zeta_q|^2] = 1/Q\). Let \(\Sigma\) be the reflectivity matrix of the target, \(\Sigma = \text{diag}(\zeta_1, ..., \zeta_Q)\). By using this notation the average RCS of the target \(\{X_q\}\), \(E[|r_{t}(\Sigma \Sigma H)|]\), is normalised to 1.

The MIMO system consists of a set of \(K\) transmitters and \(L\) receivers. Each transmitter \(k\) sends a pulse \(\sqrt{E/K_s k}(t)\). We assume that all the pulses \(s_k(t)\) are normalised. \(E\) represents the total transmit energy of the MIMO system. Receiver \(l\) receives from transmitter \(k\) the signal \(z_{lk}(t)\) which can be written as:

\[
z_{lk}(t) = \sqrt{\frac{E}{K}} \sum_{q=1}^{Q} h_{lk}^{(q)} s_k(t - \tau_{lk}(X_q) - \tau_{rl}(X_q))
\]

with \(h_{lk}^{(q)} = \zeta_q \exp(-j2\pi f_c [\tau_{lk}(X_q) + \tau_{rl}(X_q)])\). \(f_c\) is carrier frequency, \(\tau_{lk}(X_q)\) represents the propagation time delay between the transmitter \(k\) and the scattering point \(X_q\), \(\tau_{rl}(X_q)\) represents the propagation time delay between the scattering point \(X_q\) and the receiver \(l\). Note that \(h_{lk}^{(q)}\) represents the total phase shift due to the propagation and the reflection on the scattering point \(X_q\). Assuming the \(Q\) scattering points are close together (i.e. within a resolution cell), we write:

\[
s_k(t - \tau_{lk}(X_q) - \tau_{rl}(X_q)) \approx s_k(t - \tau_{lk}(X_0) - \tau_{rl}(X_0)) = s_k^l(t, X_0)
\]
where X_0 is the centre of gravity of the target $\{X_q\}$. Eq. (1) can then be rewritten as:

$$z_{lk}(t) = \sqrt{\frac{E}{K}} s_k^*(t, X_0) \times \left(\sum_{q=1}^{Q} \zeta_q \exp \left(-j2\pi f_c[\tau_{lk}(X_q) + \tau_{rl}(X_q)] \right) \right) = \sqrt{\frac{E}{K}} \left(\sum_{q=1}^{Q} h_{lk}^{(q)} \right) s_k^*(t, X_0)$$ \hspace{1cm} (3)

B. Automatic target recognition capabilities

In this section we are interested in the MIMO intensity response of an object, i.e. the coefficient $\sum_{q=1}^{Q} h_{lk}^{(q)}$ from Eq. (3). Let’s assume that the reflectivity coefficients ζ_q can be modelled by the random variable $\zeta_q \exp(2\pi U)$ where $U \in [0, 1]$ is the uniform distribution. The central limit theorem then gives us the asymptotic behaviour of the target intensity response, and we can write:

$$\lim_{Q \to +\infty} \sqrt{\sum_{q=1}^{Q} h_{lk}^{(q)}}^2 = \text{Rayleigh}(1/\sqrt{2})$$ \hspace{1cm} (4)

The convergence of Eq. (4) is fast. However for a small number of scatterers (typically $Q \leq 5$), the target reflectivity PDF exhibits noticeable variations from the Rayleigh distribution.

Assuming that man-made targets can be effectively modelled by a small number of scatterers, we can take advantage of the dissimilarities of the reflectivity PDF functions to estimate the number of scattering points. Each observation is a realisation of the random variable $\gamma_n = \sqrt{\sum_{q=1}^{Q} h_{lk}^{(q)}}^2$ with Q the number of scattering points. Each set of observations $\Gamma = \{\gamma_n\}_{n \in [1,N]}$ where N is the number of views represents the MIMO output. Given Γ, we can compute the probability that the target has Q scatterers using Bayes rules:

$$P(T_Q | \Gamma) = \frac{P(\Gamma | T_Q) P(T_Q)}{P(\Gamma)}$$ \hspace{1cm} (5)

where T_Q represents the event that the target has Q scatterers. Assuming independent observations, 4 target types and no a priori information about the target we have:

$$P(T_Q | \Gamma) = \frac{\prod_{n=1}^{N} P(\gamma_n | T_Q) \prod_{Q+2}^{N} P(\Gamma | T_Q)}{\sum_{Q=2}^{N} P(\Gamma | T_Q)}$$ \hspace{1cm} (6)

The estimated target class corresponds to the class which maximises the conditional probability given by Eq. (6). Figure 1 draws the probability of correct classification for each class depending on the number of views based on 10^6 classification experiments. With only 100 views, the overall probability of correct classification is greater than 92%.

C. Super-resolution capabilities

Let $r_l(t)$ be the total received signal at the receiver l. We can write $r_l(t) = \sum_{k=1}^{K} z_{lk}(t)$. The target response t_{lk} from the MIMO system is then the output of the filter bank $s_k^*(t)$ with $k \in [1, K]$. With our notations and assuming orthogonal waveforms, we arrive to:

$$x_{lk} = r_l * s_k^*(t) = \sum_{q=1}^{Q} h_{lk}^{(q)}$$ \hspace{1cm} (7)

The average target echo intensity from all the bistatic views is given by:

$$\mathcal{F}(r) = \frac{1}{N} \sum_{l,k} ||x_{lk}||^2$$ \hspace{1cm} (8)

Using the same target probability distribution stated in the model presented earlier (cf. section II-A), we deduce that $\mathcal{F}(r)$ follows the probability distribution:

$$\mathcal{F}(r) \sim \frac{1}{N} \sum_{n=1}^{N} \text{Rayleigh}^2(\sigma) \sim N.\Gamma(N, 2\sigma^2)$$ \hspace{1cm} (9)

where Γ is the Gamma distribution. Note that the second equivalence is given using the properties of the Rayleigh distribution. The asymptotic behaviour of $\mathcal{F}(r)$ can be deduced from the following identity [3]:

$$\lim_{N \to +\infty} N.\Gamma(N\sigma, N, 1) = \delta(1 - x)$$ \hspace{1cm} (10)

Eq. (10) shows that the MIMO mean target intensity $\mathcal{F}(r)$ converges towards the RCS defined in section II-A. Physically speaking this result demonstrates that the scatterers within one resolution cell decorrelate between each other. MIMO systems then solve the speckle noise in the target response. This demonstrates why super-resolution can be achieved with large MIMO systems.

III. WAVEFORM DESIGN FOR MIMO RADAR

A. TDMA: Time Division Multiple Access

TDMA refers to Time Division Multiple Access. It refers to waveform sets sharing the same frequency band but not at the same time. Pulses are transmitted successively at regular interval Δ_T called the pulse repetition interval (PRI). This strategy is by far the most commonly used for multi-static sonar systems. And as long as Δ_T is large enough for the echo response to drop below the detection threshold, the TDMA waveforms are quasi-orthogonal. The intrinsic problem with TDMA is related to the dynamic of the scene. In an ASW (anti-submarine warfare) context for example, one may require to survey a large area. If the maximum distance is 40km, taking into account the relatively slow sound speed...
in water, the PRI can be as high as 1 minute. A 15 knots target then could potentially move 1.5 km between pings. The tracking performance related to such system would then be diminished by the rapidly growing position uncertainty and the data association complexity.

B. **FDMA: Frequency Division Multiple Access**

FDMA refers to Frequency Division Multiple Access. In this case, the waveform set occupies different frequency bands at the same time. As long as the frequency bands of each waveform are well separated, the waveforms are almost orthogonal. Different strategies have been explored to implement FDMA depending on the slicing of the available frequency band. Each pulse can occupy for example a different continuous frequency band or having finely interleaved frequency supports. For active sonar however, the bandwidth is a rare resource. Assuming identical transmitters, a FDMA approach results in dividing the full bandwidth by the number of transmitters and then potentially losing all benefit of wideband systems including SNR and resolution gain.

C. **CDMA: Code Division Multiple Access**

Due to the restrictions of the previous two approaches, a lot of effort has been put in CDMA (code division multiple access) approaches. CDMA waveforms include polyphase code, pseudorandom phase codes, up and down chirps or codes such as Baker or Gold codes. The main criteria for MIMO waveform optimisation are the sidelobe level and cross correlation. Several optimisation solutions were proposed using SA (Simulated Annealing) algorithms [4], [5], Bee algorithms [6] or maximal length sequences [7]. In [8], Rabideau introduces another metric to measure the fitness of MIMO waveforms by considering the maximum amount of interference that can be cancelled. He then applied his metric for clutter reduction adaptive MIMO system. Another approach to CDMA waveform design is to relax the orthogonality hypothesis and optimising the waveform covariance matrix according to a given criterion. Forsythe in [9] for example computed the covariance matrix waveform covariance matrix according to a given criterion.

Section II highlighted the importance of both orthogonality and independence of the MIMO signals for recognition tasks and/or for imagery purposes. Orthogonality is indeed needed in Eq. (5) to derive the target intensity function for each MIMO pair and in Eq. (7) to extract the target signal from a specific Tx/Rx pair. All derived results including MIMO autofocus algorithms [12] then depend on the waveform orthogonality assumption. So far only TDMA or FDMA waveforms have been tested for orthogonal waveform design. The only exception is the CDMA waveforms known as up and down chirps. The up and down chirp strategy however only provides two pseudo-orthogonal pulses and it is then inadequate for large MIMO systems. In this section we propose a CDMA strategy which fits the requirements of wideband large MIMO sonar systems:

1) wideband width covered by every pulses
2) ‘good’ auto- and cross-correlation functions
3) possibility to generate a large number of orthogonal waveforms
4) waveforms with smooth phase transition
5) waveforms with relative constant amplitude

Note that if sonar amplifier electronics relax the strict constant amplitude constraint, a relative constant amplitude helps to maintain a high energy pulse and then maximise the signal to noise ratio. To fulfil the requirements previously stated, we propose to build the MIMO sonar waveforms using interlaced micro-chirp series (IMCS) with constant bandwidth. The waveform is the summation of two concatenations of micro-chirp series. Each micro-chirp has the same duration \(\tau \). The second micro-chirps series is time shifted relative to the first one by a factor of \(\frac{\tau}{2} \). Figure 3(a) draws the envelopes of interlaced two micro-chirp series.

IV. **ORTHOGONAL WAVEFORMS FOR MIMO SONAR**

Radar designs and electronics impose a certain number of constraints on the waveform design. One of the most restrictive constraint is due to the non-linear amplifiers used for such systems and it imposes to the radar waveform a constant amplitude. Although the constant amplitude requirement maximises the pulse energy, it drastically reduces the degrees of freedom. The radar community then find efficient solutions to manipulate the signal phase including phase shift. Figure 2 provides an example of phased coded radar used in [7]. For active sonar system, pulse emission is the result of piezoelectric material excitation via linear amplifiers. Sonar systems are then not constraint to pulses with constant amplitude. The transducers however cannot handle drastic phase shifts and phased coded waveforms may be extremely distorted through piezo ceramic PZT (Lead Zirconate Titantate) transducers.

![Fig. 2. Example of phased coded radar waveform.](image)

![Fig. 3. (a) envelopes of the first and second concatenated micro-chirps series (respectively blue and red curves). (b) full IMCS waveform envelop.](image)

Each micro-chirp has the same duration \(\tau \) and the same windowing. In this paper we chose the Hann tapering window. The windowing function has a threefold purpose:
• it smooths the phase transition between each consecutive micro-chirp
• it ensures a relatively constant amplitude for the overall waveform (as shown in Fig. 3(b))
• it constrains the micro-chirp to a constant bandwidth

The full available bandwidth B is divided into N_B equal sub-bandwidth. The size of the minimal sub-bandwidth is given by the micro-pulse duration τ and the windowing function and can be approximated in our case by $1/\tau$. N_B can then approximated by B/τ.

The duration of the full waveform is τN_τ where N_τ is the number of micro-chirps of the first μ-chirp series. Each μ-chirp is chosen randomly between the N_B sub-bands with a random up or down chirp structure. The randomised up or down structure minimised the cross-correlation as well as the sidelobes in the auto-correlation function. Figure 4 draws an example of IMCS waveform structure in the time-frequency plane. Blue and red segments represent respectively the μ-chirp structure of the first and second μ-chirp series in the time-frequency plane.

![Figure 4](image)

Fig. 4. Example of an IMCS waveform structure in the time-frequency domain. The blue segments represent the micro-chirps of the first series, the red ones represent the second series.

Theoretically there are $(2N_B)^{2N_\tau-1}$ different waveforms. We computed 100 different waveforms for $B = [30 \text{ kHz} - 130 \text{ kHz}]$, $\tau = 10^{-4}s$, $N_B = 10$ and $N_\tau = 90$. Figure 5(a) displays the waveform covariance matrix. For perfectly orthogonal waveforms, we expect the covariance matrix being the identity matrix I_N. Figure 5(b) shows the auto-correlation function and very low cross-correlation function of one particular waveform.

V. CONCLUSION

In paper we explore the diverse strategies for orthogonal waveforms proposed for MIMO radar applications. Because most of the strategies are based on phase coded signals, they proved to be inadequate for sonar transducers. We proposed a novel CDMA waveform: the IMCS which fits the requirement for large wideband MIMO sonar systems. The IMCS combines the coverage of the full frequency band for each waveform, very low cross-correlation functions and minimal sidelobes for the auto-correlation functions. The signal phase varies slowly and is suitable for piezo-electric transducers. Future work includes the testing of the IMCS waveforms in real environments to assess their robustness against noise, clutter or multi-path.

ACKNOWLEDGEMENT

This work was supported by the Engineering and Physical Sciences Research Council (EPSRC) Grant number EP/J015180/1 and the MOD University Defence Research Collaboration in Signal Processing.

REFERENCES