
Vol.:(0123456789)1 3

Journal of Signal Processing Systems
https://doi.org/10.1007/s11265-022-01766-3

Efficient Reconfigurable Mixed Precision �
1
 Solver for Compressive

Depth Reconstruction

Yun Wu1 · Andrew M. Wallace1 · João F.C. Mota1 · Andreas Aßmann2 · Brian Stewart2

Received: 16 December 2021 / Revised: 15 April 2022 / Accepted: 1 May 2022
© The Author(s) 2022

Abstract
Rapid reconstruction of depth images from sparsely sampled data is important for many applications in machine perception,
including robot or vehicle assistance or autonomy. Approximate computing techniques have been widely adopted to reduce
resource consumption and increase efficiency in energy and resource constrained systems, especially targeted at FPGA and
solid state implementation. Whereas previous work has focused on approximate, but static, representation of data in LiDAR
systems, in this paper we show how the flexibility of an arbitrary precision accelerator with fine-grain tuning allows a better
trade-off between algorithmic performance and implementation efficiency. A mixed precision framework of �

1
 solvers is

presented, with compact ADMM and PGD, for the lasso problem, enabling compressive depth reconstruction by varying the
precision scaling in single bit granularity during the iterative optimization process. Implementing mixed precision �

1
 solvers

on an FPGA with a pipelined architecture for depth image reconstruction across various sensing scenarios, over 74% savings
in hardware resources and 60% in power are achieved with only minor reductions in reconstructed depth image quality when
compared to single float precision, while over 10% saving in hardware resources and power is achieved compared to relative
consistently reduced precision solutions.

Keywords Compressive sensing · Depth reconstruction · Mixed precision · Alternating direction method of multipliers ·
Proximal gradient descent · Field-programmable gate array

1 Introduction

Most autonomous systems perceive the surrounding envi-
ronment via light detection and ranging (LiDAR) [1]. This
active sensing technology computes the distance to objects
by measuring, at each pixel, the time-of-flight (ToF) between

emitted and reflected photons. Both the emission and detec-
tion of photons consume power, which is of considerable
concern in sensor and processing unit design. The current
requirements on depth and spatial LiDAR resolution, how-
ever, make its power consumption prohibitive and signifi-
cantly limit its application to resource-constrained platforms,
including mobile devices with limited battery supply and
physical space, drone scene mapping with SLAM [2], aug-
mented reality [3] and mobile robotics [4].

A promising paradigm to reduce power consumption in
resource-constrained devices is approximate computing
(AC) [5], which has been widely adopted in signal process-
ing [6], robotics [7] and machine learning [8]. One particular
AC technique reduces the arithmetic precision of operations
by representing numbers with fewer bits, thereby decreas-
ing the computational cost of memory and logical units. As
a result, reduced precision (RP), as it is often known, leads
to significant savings in energy consumption [9]. In LiDAR
applications, a side benefit of saving energy in data processing
is a reduction of thermal noise in the photon detection com-
ponents, which are often near the data processing unit [10].

 * Yun Wu
 y.wu@hw.ac.uk

 Andrew M. Wallace
 a.m.wallace@hw.ac.uk

 João F.C. Mota
 j.mota@hw.ac.uk

 Andreas Aßmann
 andreas.assmann@st.com

 Brian Stewart
 brian.stewart@st.com

1 School of Engineering and Physical Sciences, Heriot-Watt
University, The Avenue, Scotland EH14 4AS Edinburgh, UK

2 Imaging Division, STMicroelectronics R&D Ltd., Tanfield,
Inverleith Row, Scotland EH3 5DA Edinburgh, UK

http://orcid.org/0000-0001-9332-2858
http://crossmark.crossref.org/dialog/?doi=10.1007/s11265-022-01766-3&domain=pdf

 Journal of Signal Processing Systems

1 3

The iterative �1 solver Alternating Direction Method
of Multipliers (ADMM) was adopted in [11] for paral-
lel compressive sensing (CS) of Lidar based depth image
reconstruction, which allowed high 3D imaging frame
rates with reduced laser power, memory use, logic cost,
and power consumption. Alternatively, the accelerated
proximal gradient descent (PGD) algorithm was adopted
in [12] for a similar problem. Several other works have
investigated the use of AC for convex optimization. In the
context of depth reconstruction, Aßmann et al. [13] and
Gürel et al. [14] made resource savings by reduction of
precision, whereas Wills et al. [15] and Wu et al. [16] have
applied approximate PGD methods to Model Predictive
Control (MPC). Very recently, Wu et al. [17] deployed
reduced precision on convex optimisation using ADMM
and PGD for compressive depth reconstruction, not only
to reduce power and resource, but also to obtain a faster
implementation. However, in previous work, the approxi-
mate precision was fixed and pre-determined through the
whole execution cycle.

In contrast, mixed precision computation has the poten-
tial to enable even further resource savings with overall low
arithmetic error for either dense or sparse iterative computa-
tions [18]. Automated precision tuning can improve energy
efficiency when employing iterative refinement [19]. How-
ever, current mixed and auto-tuned precision algorithms are
either built for an instruction-driven architecture, or support
only floating-point above single precision. This limits both
the energy savings [20], and the application of approxima-
tion to smaller scale, resource-constrained platforms.

In this work, a new, mixed precision framework is pro-
posed, supporting both fixed and floating point arithmetic.
This is applied to 3D LiDAR CS depth reconstruction using
a parallel �1 solver of the least absolute shrinkage and selec-
tion operator (lasso) problem [13]. Specifically, by applying
mixed precision scaling to typical �1 solvers, ADMM and
PGD, for compressive depth reconstruction, considerable
savings in power, logic and memory resources are achieved.

Our contributions are summarized as follows:

• An ADMM solver using iterative mixed precision imple-
mentation.

• A comparative �1 solver, PGD, with iterative mixed pre-
cision.

• A mixed precision framework is created for reconfigur-
able accelerator generation on an FPGA.

• A comparative study of both �1 solvers between the exist-
ing consistent and the new mixed precision framework is
evaluated in terms of depth reconstruction quality, imple-
mentation cost, and power consumption.

CS depth reconstruction based on convex optimization and
the use of precision scaling are introduced in Sect. 2. In

Sect. 3, the proposed framework is illustrated. The results
are demonstrated in Sect. 4 with a conclusion in Sect. 5.

2 Background

2.1 Parallel Depth Reconstruction

Using time-correlated single photon counting (TCSPC),
LiDAR systems sample depth information with single
photon precision at every pixel that can detect photon
events [21–24]. The round trip time of a photon, ToF, and
thus the distance travelled by each photon, can be accurately
measured. To improve the signal-to-noise ratio, it is com-
mon to increase the sampling size by accumulating many
photon events in a histogram. Recent advancements in solid-
state photon count arrays [10, 25, 26] enable high resolution
LiDAR imaging. However, as the number of photon count
pixels N, i.e., the resolution of the depth image, increases so
does the number of raw histogram measurements.

For high resolution LiDAR, it can therefore be challeng-
ing to store and process these raw histogram measurements
in real-time.

To address this large data volume, [11] has applied com-
pressive sensing [27, 28] to depth imaging and devised a strat-
egy that processes patches of the depth image independently
and in parallel, achieving real-time reconstruction. The frame-
work proposed in [11], named checkerboard compressive
depth sensing (CBCS), is illustrated in Fig. 1. It uses a random
pattern of illumination (structured light) that is reflected from
the scene and acquired by photon pixels in a block-based man-
ner. Each block is reconstructed by solving two lasso prob-
lems [29]: one for reconstructing a quantity called the depth-
sum, xQ ∈ ℝ

nB , where nB is the number of pixels in block
B, and one for reconstructing a quantity called the photon
count intensity, xI ∈ ℝ

nB . Specifically, given yQ ∈ ℝ
mB (resp.

yI ∈ ℝ
mB) compressive measurements of the depth-sum (resp.

photon count intensity), xQ and xI are recovered by solving

A A

AA

Q I

Q I

Q I

Q I

xd=xQ / xI

Sparse reconstruc�on

Depth Image

Pa�ern

Photon Pixels

Scene

Structured Light

Transform, F

Figure 1 Parallel Depth Reconstruction [13].

Journal of Signal Processing Systems

1 3

where A ∈ {0, 1}mB×nB is a known binary matrix that encodes
the active pixels in each block for each measurement in yQ
or yI , and F ∈ ℝ

nB×nB is a sparsifying matrix, e.g. a DCT
matrix, that we assume is invertible. 𝜆 > 0 is a regularisation
parameter, and ‖ ⋅ ‖2 and ‖ ⋅ ‖1 are, respectively, the �2 - and
�1-norms. After recovering these quantities, the final depth
image at block B is computed by dividing xQ by xI point-
wise: xD = xQ.∕xI ∈ ℝ

nB . The work in [11] also proposed
a post-processing strategy to remove blocking effects. The
problems in (1) are ubiquitous in signal processing and can
be solved efficiently via ADMM [30] and PGD [31].

2.2 Mixed Precision and Tuning

Mixed precision combines the accelerated and less resource
intensive processing of lower precision with the greater
accuracy of higher precision arithmetic. It is normally
deployed for iterative refinement using floating point data
formats [32, 33], for example using three levels of preci-
sion [34]. Customized precision tuning instruments have
been employed based on specific input sets [19]. Such pre-
cision scaling has gained increasing interest for computa-
tion-intensive applications, such as deep learning, saving
computation and data storage [35] using both floating point

where S is the sign, M the mantissa, and E the exponent;
and fixed point

where S is the sign, I the integer value as sum of 2b , and F
the fraction value as the sum of 2−b from each bit position b
depending on the 2’s complement format [36].

Different arithmetic types yield different dynamic ranges.
Floating point with nonlinear binary representation uses less
bits, while fixed point enables simpler binary operations but
requires more bits. Hence, the various precisions in both
floating and fixed point affect not only the algorithm’s perfor-
mance, but also the embedded implementation.

By adjusting the combination of mixed precision arith-
metic at compile-time, static precision tuning is performed
once during the system design phase [34]. Such a tuning
process can be considered as part of wider hardware/soft-
ware co-design approaches, profiling the application data
and code to compare with empirical measurement before

(1)minimize
xQ

1

2
‖‖yQ − AxQ

‖‖
2

2
+ �‖‖FxQ‖‖1

(2)minimize
xI

1

2
‖‖yI − AxI

‖‖
2

2
+ �‖‖FxI‖‖1 ,

(3)−1S ×M × 2E-127,

(4)−1S × (I + F),

running the system. On the other hand, dynamic precision
tuning is invoked multiple times during the execution of the
algorithm at run-time, which can incur some overhead [19].

We develop a framework for CS depth reconstruction,
using ADMM and PGD to solve lasso. Its key aspect is the
mixed precision design of both the arithmetic data type
and the binary bit width, appropriate to the performance
requirements of the sensing environment. This provides an
alternative to our earlier work [17], which used constant
precision, and results in a significantly more energy efficient
implementation.

3 Mixed Precision Framework

Optimization-based algorithms for lasso are iterative, with
the same sequence of steps occurring at each iteration. Tra-
ditionally, all computations are performed with the same
precision. Here, instead, we consider the case in which dif-
ferent iterations use different precision. We focus firstly on
ADMM, secondly on PGD. Then, we present the design flow
of our mixed precision accelerator.

3.1 Mixed Precision ADMM

We consider the following reformulation of the problem
in (1 and 2):

where we define A ∶= AF−1 ∈ ℝ
m×n . Each iteration of

ADMM [30] applied to (5) consists of

where 𝜌 > 0 is the augmented Lagrangian parameter,
In ∈ ℝ

n×n the identity matrix, u ∈ ℝ
n a dual variable, and

S�(⋅) the soft-thresholding operator applied component-
wise: for v ∈ ℝ , S�(v) = v − � when v ≥ � , S�(v) = v + �
when v < −𝜆 , and S�(v) = 0 otherwise. If the parameter � is
constant throughout the iterations, the matrix A⊤A + 𝜌In and
its inverse can be precomputed. This can be done efficiently
via the matrix inverse lemma [37],

(5)
minimize

x,z

1

2
��y − Ax��

2

2
+ �ADMM‖z‖1

subject to x − z = 0 ,

(6)xk+1 =
(
A⊤A + 𝜌In

)−1[
A⊤y + 𝜌(zk − uk)

]

(7)zk+1 = S�ADMM∕�

(
uk + xk+1

)

(8)uk+1 = uk + xk+1 − zk+1 ,

(9)
(
A⊤A + 𝜌In

)−1

=
1

𝜌
In −

1

𝜌2
A⊤

(
Im +

1

𝜌
AA⊤

)−1

A

 Journal of Signal Processing Systems

1 3

and by computing the inverse of the m × m matrix in (9) via
its Cholesky decomposition, Im + (1∕𝜌)AA⊤ = LL⊤ , where
L ∈ ℝ

m×m is lower triangular. The quantity g ∶= A⊤y can
also be pre-computed. In our context, such pre-computations
have the additional benefit of avoiding unnecessary accuracy
loss when using mixed precision during the iterations. The
resulting algorithm (with fixed precision) is shown in Algo-
rithm 1, from which we can see that each iteration requires
O(n + m2) arithmetic operations. Step 4 of Algorithm 1 dif-
fers from (7) in that it uses over-relaxation, parameterized by
0 < 𝛼 < 2 , which can improve convergence [30].

5

Algorithm 2 implements Algorithm 1 using mixed pre-
cision. It takes as input the constant vector g = A⊤y and
matrix H = A⊤L⊤

−1
L−1A , and the maximum number of

iterations kmax . At each iteration k, the algorithm recasts
the constants g and H and the variables zk and uk to the
precision required at the current iteration. In software
such a function is implemented conceptually as a data type
cast, while in hardware it is implemented through data
path trimming, where the extra data path are unconnected
between mismatched bit-width.

These variables are then used by the mixed precision func-
tion ∗ mixiter , described in Algorithm 3, which performs the
same steps as each iteration of Algorithm 1, but with precision
specified by lk . This variable represents the index to a set of static
functions, each of which is written for a predefined precision,
e.g., floating point with 32 bits or fixed point with 30 bits. Each
of these functions uses the precomputed constants � , �̂� ∶= 1 − 𝛼 ,
� , �̂� ∶= 1∕𝜌 , and � ∶= �ADMM∕� . The initial index l0 is found
based on the maximum � representing the precision loss given a
certain threshold. This process is described in Sect. 3.2. During
the iterations, lk is modified to meet the demanding finer accuracy
of the algorithm, increasing its precision and changing the ele-
mentary bit width gradually. We fixed the number of iterations to
kmax = 5 , determined empirically, as no further improvement on
reconstruction of depth has been observed beyond this point [17].
In the particular case of parallel computation using small blocks,
4 × 4 pixels, ADMM converges in very few iterations.

3.2 Mixed Precision PGD

We now consider the application of proximal gradient descent
(PGD) to (1). Each of those problems can be written as

where A ∶= AF−1 ∈ ℝ
m×n . Defining the convex differenti-

able function g(x) ∶= (1∕2)‖y − Ax‖2
2
 , the convex function

h(x) = �PGD‖x‖1 , and their sum f (x) = g(x) + h(x) , PGD
applied to (10) yields the iterative shrinkage thresholding
(ISTA) algorithm [31, 38]:

where �k ≥ 0 is the step size at iteration k, and prox�kh(⋅)
the proximal operator of �kh which, in this case, is the soft-
thresholding operator S�k�PGD , defined in Sect. 3.1. PGD
converges whenever 0 < 𝛼k ≤ 1∕L , where L is the Lipschitz
constant of the gradient of g, i.e., ∇g(x) = A⊤A . That is, L
can be found as the maximum eigenvalue of ATA . We use a
constant stepsize: �k = � = 1∕L.

10

(10)minimize
x

1

2
��y − Ax��

2

2
+ �PGD‖x‖1 ,

(11)
xk+1 = prox𝛼kh(x

k − 𝛼k∇g(x
k))

= S𝛼k𝜆PGD

(
xk − 𝛼kA

⊤Axk + 𝛼kA
⊤y
)
,

Journal of Signal Processing Systems

1 3

The general algorithm is described in Algorithm 4. It
takes as input the matrix A, the vector g ∶= A⊤y , the regu-
larizer constant �PGD , and the maximum number of itera-
tions kmax . After computing the stepsize � , it precomputes
the vector g� ∶= �g , the matrix W ∶= 𝛼A⊤A , and the thresh-
old � ∶= ��PGD . Steps 2 and 3 then implement exactly (11).

Algorithm 5 implements Algorithm 4 using mixed pre-
cision. Both algorithms have the same inputs and initiali-
zation, except that Algorithm 5 now also initializes the
function pointer with index lk , which specifies a static func-
tion ∗ mixiterlk (⋅) that performs the main computations of
PGD with a given precision. The order of these functions,
which are accessed via lk , determines the sequence of pre-
cisions, maintained through combined search of various
bit widths based on the precision loss of the precomputed
parameters and a post-search fine tuning. As in mixed pre-
cision ADMM, all the relevant variables in Algorithm 5 are
cast to the required precision and then used in the ∗ mixiter
function indexed by lk . castc only demonstrates the arith-
metic precision transformation at the software level, and
is not an overhead in hardware design at the appropriate
precision. In this work, we only consider mixed precision
within the same arithmetic type. As in mixed precision
ADMM, we set the maximum number of iterations of PGD
to kmax = 5.

3.3 Mixed Precision Accelerator

We developed the semi-automated framework illustrated in
Fig. 2 based on the Matlab and Xilinx Vivado toolsets. It
quickly prototypes an approximate accelerator with mixed-
precision arithmetic on reconfigurable platforms. To support

mixed precision design, we created an approximate generic
linear algebra library calling third-party arithmetic types,
which are based firstly on a customized floating-point
library FloatX [32] and secondly on the Xilinx fixed-point
library [39]. The library was established with C++ tem-
plates in the header only, which allows later specific arith-
metic type allocation. Its major features are:

• General (non-symmetric) real value operations.
• Arbitrary bit width floating- and fixed-point arithmetic.
• Basic vector/matrix algebra arithmetic (addition, subtrac-

tion, multiplication, division, inversion).
• Triangular factorization (LU, and Cholesky decomposition).
• Orthogonal factorization (QR decomposition).

Based on the approximate linear algebra library, a user-
defined kernel, which indicates the specific portion of signal
processing application to be the target for approximation, is
considered as input in Fig. 2. By compiling the input source,
a list of various iterative functions are created using different
arithmetic precisions, as expressed in both Algorithms 3 and
6. The source compiler is developed based on the Matlab
MEX compiler API where the Design Space Exploration
(DSE) with precision adaptation is evaluated based on the
input pre-computed data.

The quantization effect of the data from single-precision
floating point (32 bits, called full precision in the later con-
text of this paper) to reduced precision is considered as the
criterion for precision scaling. Specifically, the normalized
absolute difference is used for floating point (FP) arithme-
tic while the absolute difference is adopted for fixed point

DSE

Kernel (.cpp)

Source
Compila�on

Precision
Adapta�on

Synthesis
High-Level
Synthesis

Accelerator
Genera�on

Accelerator
(.vhd)

Approximate
Linear Algebra

Library

Figure 2 Mixed Precision Design Flow.

 Journal of Signal Processing Systems

1 3

(FXP) arithmetic due to the different functional relationships
between the binary representations and decimal values. The
most representative values, the maximum and minimum of
those pre-computed parameters, are picked for the numeri-
cal analysis.

To measure the effects of different FP quantizations, we
use the normalized absolute difference

where � ∈ ℝ
n is a vector and ‖ ⋅ ‖1 the �1-norm. To measure

the effects of different FXP quantizations, we simply use the
absolute difference

We guarantee that in either (12) or (13), we always have
� ≤ � = 5 × 10−3 . Different arithmetic types will yield dif-
ferent such � . Using exhaustive search, we select the bit
width of different parts in the binary arithmetic format for
either FP or FXP as the smallest that satisfies � ≤ � . The
representation with that bit width is then indexed by l0 in
Algorithms 2 and 5.

The kernel with chosen precision is adopted for both the
integer and fraction part representations to achieve a rela-
tively close reconstruction performance to full precision,

(12)� =
��� − castc(�)

��1
‖�‖1

,

(13)� = ‖‖� − castc(�)
‖‖1 .

where heuristic fine tuning is performed at the DSE stage.
The accelerator is generated with a Hardware Description
Language (HDL) by calling Xilinx High-Level Synthesis
(HLS) tools within the Matlab Framework. With combined
algorithm evaluation and hardware implementation in a
loop, it can quickly prototype mixed precision design on
reconfigurable platforms.

4 Evaluation

Both �1 solvers, ADMM and PGD, using either floating (FP)
or fixed-point (FXP) arithmetic, are illustrated and evalu-
ated for compressive depth reconstruction on two synthetic
and two real underwater sensing datasets. Reconstruction
of the depth image using dSparse [13] (a non-compressive
approach with oversampling) with full, single floating
point (FP 32 bits) precision is adopted as a benchmark for
comparison.

The FP 32 ADMM or PGD solutions are considered as
the baseline, while the identified highest accuracy in the
pre-scheduled list is considered as the most suitable reduced
precision solution. Both are adopted for comparisons of
recovered image fidelity as well as implemented hardware
clock speed, resource usage and power consumed.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3 Short range dataset [40]: recovered depth images using a
dSparse, consistent FP 32 bit); and ADMM solver with b consistent
FP 32 bit; c consistent FP 18 bit; d consistent FP 22 bit; e mixed pre-

cision from FP 18 to 22 bit for each iteration; f consistent FXP 20 bit;
g consistent FXP 24 bit; h mixed precision from FXP 20 to 24 bit for
each iteration.

Journal of Signal Processing Systems

1 3

4.1 Depth Reconstruction Accuracy

The Peak Signal-to-Noise Ratio (PSNR) and Structural
Similarity Index Measure (SSIM) [41] are both considered
as quality metrics, showing the fidelity of reconstruction and
the perceived quality based on the pixel-wise absolute differ-
ence for normalised similarity scaling. Four different sensing
environments are adopted to evaluate the quality of depth
reconstruction with mixed precision: short range [40] and
long range [42] synthetic benchmarks, and real LiDAR data
for two very short range, underwater scenes [43]. In the short
range scenario, the detailed mixed precision phenomenon
is evaluated firstly against the reconstructed depth image
quality for both PSNR and SSIM. Then mixed precision is
applied to the other three scenarios, where the corresponding
depth reconstruction accuracy is also evaluated.

• Scene 1: short range
 By using the design flow for different scenes at different

stand-off distances and dynamic ranges, mixed FP from
18 to 22 bits, and FXP from 20 to 24 bits are employed
for the short range synthetic scene with distances rang-
ing from 1.8 to 3.4 meters. Figures 3 and 4 illustrate
the depth reconstruction accuracy against various con-
sistent and mixed precision for both �1 solvers, ADMM
and PGD. The ground truth is set as dSparse using single

precision floating point with 32 bits, where its PSNR and
SSIM are infinity and 1 since the comparison is to itself.

 The recovered depth images using the ADMM solver
with FP arithmetic are shown in Fig. 3b–e. The PSNR
and SSIM are 28 dB and 0.75 respectively for the base-
line FP 32 bits (Fig. 3b), while, comparatively, the worst
(FP 18) and best (FP22) quality of the pre-scheduled con-
sistent FP precision are illustrated in Fig. 3c, with 0.15
loss in SSIM, and Fig. 3d, with similar PSNR and SSIM.
Increasing the bit-width is shown by → , the mixed FP
precision (FP 18→ 22 bits) in Fig. 3e shows only 0.022
dB loss in PSNR and 0.009 loss in SSIM. It has even
slight better PSNR than the consistent FP 22 solution.
Corresponding depth images recovered by using the FXP
ADMM solver are shown in Fig. 3f and g. Similarly, the
worst case (FXP 20) in Fig. 3f is degraded in both PSNR
and SSIM while the best case (FXP 24) in Fig. 3h has
even better PSNR and SSIM than the baseline in Fig. 3b.
Using mixed precision FXP 20→ 24 bits, there is a PSNR
loss of 0.19 dB and a 0.004 loss in SSIM.

 Similarly, Fig. 4b–e illustrate the recovered depth
image using the PGD solver with FP, while Fig. 4f–h are
those using FXP. The baseline in Fig. 4b achieves the
same SSIM as the FP baseline with slightly better PSNR.
The worst case (FP 17) of pre-scheduled, consistent FP
in Fig. 4c degrades in both PSNR and SSIM, while the

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4 Short range dataset [40]: recovered depth images using a
dSparse with single precision, FP 32 bit; and PGD solver with b con-
sistent FP 32 bit; c consistent FP 17 bit; d consistent FP 21 bit; e

mixed precision from FP 17 to 21 bit for each iteration; f consistent
FXP 18 bit; g consistent FXP 22 bit; h using mixed precision from
FXP 18 to 22 bit for each iteration.

 Journal of Signal Processing Systems

1 3

best case in Fig. 4d is almost the same as the baseline.
The worst case (FXP 18) of pre-scheduled, consistent
FXP has even better PSNR than the baseline but is much
worse in SSIM. Both mixed FP and FXP precision show
minor loss in both PSNR and SSIM.

 To further illustrate the use of mixed precision, PSNR
and SSIM are plotted against bit width for both ADMM
and PGD using FP and FXP representations in Figs. 5–8.
The consistent precision, shown as a red line, refers to the
use of the same precision over all iterative computations,
and is compared to the use of mixed precision shown as
blue line.

 As shown in Figs. 5 and 6, for the ADMM solver, the
PSNR and SSIM values using mixed precision match
the highest, consistent precision in either FP or FXP.
An exception is the PSNR of mixed FXP precision in
Fig. 5b, which is gradually degraded as the bit width
decreases.

 Similar trends exist for the PGD solver as shown in
Figs. 7 and 8, where all the PSNR and SSIM values for
mixed FXP precision match those of the highest con-
sistent precision in either FP or FXP, degrading with
decreasing bit width.

 Summarising, from Figs. 5–8 we observe that the
mixed precision does achieve similar fidelity of the
reconstructed depth image when compared to the high-
est pre-scheduled precision, and to the baseline single
floating point precision. However, there are differences
between the FP and FXP representations during the tran-
sition from low to high precision in the pre-scheduled
mixed precision list. The FP representation has a smooth
transition for both PSNR and SSIM. Due to the compu-
tational uncertainty of truncating errors, the transition
of PSNR is slightly bumpy for the FXP representation,
but the transition of SSIM is a smooth fucntion of the FP
representation.

• Scene 2: long range
 Using both ADMM and PGDs, mixed FP from 16 to 20

bits, and FXP from 30 to 34 bits are adopted for the long
range, synthetic scene with distances ranging from 0 to
100 meters. Figure 9 illustrates the comparisons of depth
reconstruction. The baselines of the reconstructed depth
image using ADMM and PGD solvers are illustrated in
Fig. 9b and e. The PSNR using the ADMM solver is
slightly better than the PGD solver by 0.1 dB, while the
SSIM using the ADMM solver is slightly worse by 0.07.

Figure 5 ADMM:PSNR v.s.
Bitwidth (Short Range Dataset).

(a) (b)

Figure 6 ADMM: SSIM v.s.
Bitwidth (Short Range Dataset).

(a) (b)

Journal of Signal Processing Systems

1 3

 With mixed precision using the ADMM solver, there
is a 0.2 dB loss of PSNR for FP from 18 to 22 bits and
0.021 dB loss of PSNR for FXP from 28 to 32 bits. Using
the PGD solver, the mixed FP precision from 18 to 22
bits shows a slightly better PSNR than the baseline, and
than mixed FXP precision from 30 to 34 bits. The SSIM
with both FP and FXP mixed precision are both slightly
worse than the baseline by about 0.006.

 Summarising, evaluation of the use of mixed precision in
the long range, as in the short range synthetic scenario, con-
firms the comparable fidelity of reconstructed depth image
to both the baseline and the consistent precision solutions.
Further evaluation on real data is now considered.

• Scene 3: underwater A
 This scene has distances ranging from 27 to 39 cen-

timeters. Mixed FP from 18 to 22 bits using both the
ADMM and PGD solvers in Fig. 10c and f, FXP from 28
to 32 bits using the ADMM solver in Fig. 10d and FXP
from 30 to 34 bits using the PGD solvers in Fig. 10g are
adopted.

 There is a slight PSNR degradation of about 0.2 dB
using ADMM with mixed FP precision, and an almost
identical PSNR with mixed FXP precision. SSIM is
degraded by around 0.01 for both mixed FP and FXP

precision using ADMM. For mixed precision using the
PGD solver, the PSNR with both mixed FP and FXP
precision is about 0.1 dB better than the baseline, while
the SSIM is slightly degraded by 0.005.

• Scene 4: underwater B
 This scene has distances ranging from 31.4 to 31.8

centimeters. Mixed FP from 23 to 27 bits using ADMM
in Fig. 11c, FP from 19 to 23 bits using PGD in Fig. 11f,
FXP from 32 to 36 bits using the ADMM solver in
Fig. 11d and FXP from 30 to 34 bits using the PGD
solver are illustrated in Fig. 11g. For FP and FXP mixed
precision using both the ADMM and PGD solvers, the
PSNR amd SSIM are always maintained at a similar level
to the baseline FP 32 bits.

 Hence, from our experiments on diverse synthetic and
real data, illustrated in Figs. 3–11, we can make the fol-
lowing observations.

i The use of reduced precision in both FP and FXP
representations leads to depth reconstruction that
has considerable fidelity to the full precision solu-
tions.

ii The use of mixed precision, introduced in this paper,
also achieves minor losses in PSNR and SSIM when

Figure 7 PGD: PSNR v.s.
Bitwidth (Short Range Dataset).

(a) (b)

Figure 8 PGD: SSIM v.s.
Bitwidth (Short Range Dataset).

(a) FP (b) FTP

 Journal of Signal Processing Systems

1 3

(a) (b) (c) (d)

(e) (f) (g)

Figure 9 Long range dataset [42]: recovered depth images using a
dSparse with consistent FP 32 bit; b ADMM, consistent FP 32 bit; c
ADMM, mixed FP 16 to 20 bits; d ADMM, mixed FXP 30 to 34 bit;

e PGD, consistent FP 32 bit; f PGD, mixed FP 16 to 20 bits; g PGD,
mixed FXP 30 to 34 bit.

(a) (b) (c) (d)

(e) (f) (g)

Figure 10 Underwater dataset A [44]: recovered depth images using
a dSparse with consistent FP 32 bit; b ADMM, consistent FP 32 bit;
c ADMM, mixed FP 18 to 22 bits; d ADMM, mixed FXP 28 to 32

bit; e PGD, consistent FP 32 bit; f PGD, mixed FP 18 to 22 bits; g
PGD, mixed FXP 30 to 34 bit.

Journal of Signal Processing Systems

1 3

compared to even the highest, fixed precision rep-
resentations, and is significantly better than the
lower precision solutions. This shows a path to even
greater resource savings.

iii The use of higher precision in the later iterations of
�1 solvers makes a more significant contribution to
the quality of optimization outcome, while the use
of lower precision in the earlier iterations is either
tolerable or can be well compensated by the later
iteration with higher precision.

iv For different mixed precision �1 solver solutions,
PGD incorporates lower precision in general than
ADMM to achieve similar fidelity in general, since
PGD has simpler computational operations with less
opportunity of precision loss.

v Given that we can achieve similar fidelity with mixed
precision, we anticipate that significant cost and
power savings are achievable with a mixed strategy,
when compared computation using fixed precision,
whether full or even reduced through all iterations.

Having shown that the use of mixed precision is possible
without significant degradation in quality of reconstruction,
we now proceed to show how the use of mixed precision can
result in further savings in hardware utilization and power
consumption in the next section.

4.2 �
1
 Solver Accelerators

We have designed and implemented fully pipelined archi-
tectures using single and mixed precision with FP and FXP
arithmetic on a Xilinx Ultrascale+ ZCU106 architecture
using Vivado 2019.1 to fast prototype our design without
exhaustive hardware optimization.

Following evaluation of algorithmic performance, the
corresponding pipelined architecture has been implemented
for either consistent or mixed precision ADMM and PGD to
solve the twin lasso optimization problem in Eq. 1, where

(a) (b) (c) (d)

(e) (f) (g)

Figure 11 Underwater dataset B [44]: recovered depth images using
a dSparse with consistent FP 32 bit; b ADMM, consistent FP 32 bit;
c ADMM, mixed FP 23 to 27 bits; d ADMM, mixed FXP 32 to 36

bit; e PGD, consistent FP 32 bit; f PGD, mixed FP 19 to 23 bits; g
PGD, mixed FXP 32 to 36 bit.

mixiter

M
VM

ul

VS
ub

VS
M

ul

VS
ub

VSSub VSAdd

VSCmpVSCmp

VSub

ĸg

x

x

W

PGD

retixi
m

DGP PG
D

m
ixi

te
r

PG
D

m
ixi

te
r

PG
D

m
ixi

te
r

PG
D

m
ixi

te
rS1

M1

E1x x
S2

M2

E2

S3

M3

E3

S4

M4

E4

Reconstruc�on

PGD PGD

xQ / xI

yQ yI

xD

Figure 12 An Example of PGD Architecture.

 Journal of Signal Processing Systems

1 3

each iteration corresponds to a pipeline stage with either the
same or an allocated, different precision. This strategy can
be extended to more iterations, considering mixed precision
between batched sub-iterations.

An example of the dataflow architecture of implemented
accelerator using PGD �1 solver with mixed floating point
precision is illustrated in Fig. 12. The MVMul performs the
matrix-vector multiplication, where other VS ∗ blocks are
vector-scalar addition, subtraction, multiplication and com-
parison. VSub implements the vector subtraction.

The datapath of exponent and mantissa are separated
between iterative mixed precision, where the lower bit-width
is connected to corresponding part of later higher bit-width

pipelines. The outcomes from the twin �1 solver, xQ and
xI , adopt a vector element-wise division to obtain the final
depth pixels xD.

Resource utilization is derived from the Xilinx tools using
the place and route implementation, while the power is esti-
mated using the Xilinx Power Estimator (XPE). Table 1 pre-
sents the resource and power comparisons of both consistent
and mixed precision using the ADMM and PGD solvers for
all scenarios, which also lists the performance of system
reaction latency and processing speed in pixel/s given fixed
number of pixel in a depth image. The mixed precision val-
ues correspond to the bit width variation chosen accord-
ing to the depth scaling for each of the scenes while the

Table 1 Resource and quality metrics for consistent and mixed precision. For custom floating point, the bit width = 1+E+M and for custom
fixed point, the bit width = 1+I+F.

Resources Precision and Performance

Scene LUT DSP Dynamic Bit Width Frequency Latency Throughput Energy

Arithmetic Index (DSP48E2) Power (W) (bits) (MHz) (ms) Pixel/s (�J/Pixel)

�ADMM FP32 1,2,3,4 20815 110 0.774 (1,8,23) 439 0.26 3.07e5 2.52
p = 8 FP27 4 21885 50 0.660 (1,6,20) 407 0.26 3.07e5 2.14
n = 16 FP23→27 4 20405 40 0.626 (1,6,16→20) 394 0.24 3.33e5 1.88

FP22 1,3 18455 25 0.577 (1,6,15) 430 0.27 2.96e5 1.95
FP18→22 1,3 16192 25 0.535 (1,6,12→15) 430 0.25 3.20e5 1.67
FP20 2 15680 25 0.541 (1,6,13) 472 0.25 3.20e5 1.69
FP16→20 2 11092 25 0.494 (1,6,9→13) 473 0.23 3.47e5 1.42
FXP36 4 9990 60 0.381 (1,23,12) 418 0.09 8.88e5 0.43
FXP32→36 4 9454 60 0.374 (1,23,8→12) 417 0.09 8.88e5 0.42
FXP34 2 9375 60 0.375 (1,26,7) 401 0.09 8.88e5 0.42
FXP30→34 2 8902 57 0.367 (1,25,4→8) 401 0.09 8.88e5 0.41
FXP32 3 8950 60 0.369 (1,21,10) 406 0.08 1.00e6 0.37
FXP28→32 3 8461 54 0.357 (1,21,6→10) 406 0.08 1.00e6 0.36
FXP24 1 6775 30 0.316 (1,13,10) 415 0.07 1.14e6 0.28
FXP20→24 1 6807 21 0.307 (1,13,6→10) 403 0.07 1.14e6 0.27

PGD FP32 1,2,3,4 16020 95 0.641 (1,8,23) 415 0.10 8.00e5 0.81
p = 8 FP23 4 14845 25 0.537 (1,6,16) 421 0.08 1.00e6 0.54
n = 16 FP19→23 4 13116 25 0.510 (1,6,12→16) 419 0.08 1.00e6 0.51

FP22 3 14115 25 0.524 (1,6,15) 469 0.09 8.88e5 0.59
FP18→22 3 12368 25 0.497 (1,6,11→15) 453 0.09 8.88e5 0.56
FP21 1 13070 25 0.506 (1,6,14) 453 0.09 8.88e5 0.57
FP17→21 1 11663 25 0.484 (1,6,10→14) 453 0.08 1.00e6 0.48
FP20 2 12020 25 0.496 (1,6,13) 473 0.09 8.88e5 0.56
FP16→20 2 11092 25 0.473 (1,6,9→13) 469 0.08 1.00e6 0.47
FXP36 4 7520 80 0.380 (1,23,12) 417 0.01 8.00e6 0.048
FXP32→36 4 6162 80 0.368 (1,23,8→12) 412 0.01 8.00e6 0.045
FXP34 3 5860 80 0.366 (1,21,12) 407 0.01 8.00e6 0.045
FXP30→34 3 5537 80 0.362 (1,21,8→12) 408 0.01 8.00e6 0.044
FXP32 2 5425 80 0.361 (1,27,4) 428 0.01 8.00e6 0.045
FXP28→32 2 5060 68 0.329 (1,23→27,4) 400 0.01 8.00e6 0.04
FXP22 1 5330 20 0.300 (1,12,9) 378 0.008 1.00e7 0.03
FXP18→22 1 4151 20 0.283 (1,12,5→9) 359 0.008 1.00e7 0.028

Journal of Signal Processing Systems

1 3

consistent precision cases are those of the highest bit width
in the mixed precision combination.

The resource utilization of the Look-Up-Table (LUT) and
Digital Signal Processor (DSP) units are reduced by up to
67% and 80% respectively for the ADMM solver using mixed
20 to 24 bit-width fixed-point precision, and by up to 74%
and 78% for the PGD solver using mixed 18 to 22 bit-width
fixed-point precision. The related power consumption is sig-
nificantly reduced by up to 60% and 55% for ADMM and
PGD solver respectively. Though some mixed fixed-point
implementation consume more DSPs than mixed floating-
point, they are all less than using single precision floating
point.

Hence, by adopting mixed precision with either FP or
FXP, there are significant hardware resource and power
savings when compared to single float precision. Given

the similar algorithmic performance between the ADMM
and PGD solvers, the outcomes for PGD are better than
ADMM in all aspects, both resource utilization and power
consumption. Due to the simplicity of the computational
operations, the implemented PGD solver gains not only in
hardware cost but also in throughput in pixels per second,
and in quantified efficiency measured as energy consump-
tion per pixel.

For the hardware implementations, the quality of depth
reconstruction is quantified against the consumed resource
and power in Figs. 13 and 14 for both the ADMM and PGD
solvers. Only SSIM is adopted here as it is more sensitive to
individual range errors, though PSNR should have similar
trend.

Overall, with an average of 1% degradation in the SSIM
metrics for depth reconstruction shown in Figs. 3–11, the

Figure 13 SSIM against
Resource and Power for the
ADMM solver: LUT is con-
sidered as the most important
resource representing logic area
while the power in mW is con-
sidered. The higher the SSIM
value with less LUT and Power,
the better.

(a)

(b)

 Journal of Signal Processing Systems

1 3

cost of the ADMM solver using mixed precision is reduced
by up to 67% for Look-Up-Tables (LUT), up to 80% for DSP
units, when compared to single precision, and reduced by
up to 74% for LUT and 78% for DSP for the PGD solver.
The estimated dynamic power consumption using mixed
precision is also significantly reduced by over 60% and 55%
for the ADMM and PGD solvers respectively compared to
single precision, and by approximately 10% compared to the
corresponding consistent precision.

For the same sensing scenes with similar SSIM, FXP
mixed precision has similar resource utilization to its com-
parative consistent precision, while the cost with FP mixed
precision is slightly lower than its comparative consist-
ent precision with reductions of up to 10% LUT. Accord-
ingly, similar phenomena occur for the power consumption
between FXP or FP mixed precision and their comparative

consistent precision solutions. The largest advantage of FXP
mixed precision over FP occurs in the first short range sce-
nario, which has over 50% reduction in LUT than its corre-
sponding mixed precision accelerator with FP for both the
ADMM and PGD solvers.

The bit-width of mixed precision varies between 18 to
28 bits. According to Table 1 and Figs. 3–11, compared to
mixed floating-point precision, mixed fixed-point is gener-
ally more efficient in terms of power per computation, as
measured by μJ/Pixel. In contrast, mixed floating point uses
less representation bits, which requires less bandwidth for
data communication links. Both benefits are important
depending on the design requirements.

Finally, we observe that the implemented �1 solvers are
for processing a single block within the parallel compressive
depth reconstruction framework. Hence, the performance

Figure 14 SSIM against
Resource and Power for PGD
solver.

(a)

(b)

Journal of Signal Processing Systems

1 3

values given in Table 1 are considered as an upper bound
of overall real-time depth reconstruction, assuming all the
blocks are processed in parallel.

5 Conclusions

In this work, a mixed precision framework using both float-
ing and fixed point arithmetic has been introduced with a
pre-computed, static schedule. It has been adopted for com-
pressive depth reconstruction design using approximate con-
vex optimization and linear algebra libraries. By adopting
a mixed precision schedule matched to the known stand-off
and dynamic range of the LiDAR-sensed scene, incremental
precision scaling has been applied to the �1 solvers, ADMM
and PGD, for depth image reconstruction lasso using convex
optimization. The results show that iterative mixed precision
in both floating point and fixed point enables similar per-
formance of depth reconstruction compared to single float
precision with significant cost and power reductions using
a pipelined architecture; greater than 70% in the best cases.

By analyzing the difference between the ADMM and
PGD solvers using either floating point and fixed arithme-
tic, more efficient depth image reconstruction is enabled
with the PGD solver. The benefits of the different arithme-
tic types have been demonstrated and shown to vary across
the different scenarios. In future work, the adaptive run-
time strategies to set the mixed precision based on evalu-
ation during the iterative schedule of convex optimization
should be explored, according to diverse dynamic sensing
ranges and different arithmetic types.

Author Contributions Yun Wu is response for all the research and
development in this work as well as the drafting the paper. Andrew M.
Wallace, João F.C. Mota, Andreas Aßman are response for providing
theoretical and development support as well as editing the draft. Brian
Stewart is the project partner with technique support.

Funding This work is supported by the Engineering and Physical
Sciences Research Council of the UK (EPSRC) Grant number EP/
S000631/1 and the UK MOD University Defence Research Collabora-
tion (UDRC) in Signal Processing.

Data Availability There is no public data available for this work.

Declarations

Ethical Approval There are no human or animal related experiments
conducted in this research. All the authors are agreed with this submis-
sion. This work is invited extension from previous SiPS 2021 paper
entitled “Mixed Precision � 1 Solver for Compressive Depth Recon-
struction: An ADMM Case Study”. Our related previous work are in
reference [13, 16, 17]. We declare that this work fulfills the standard
requirement of invited extended publication with over 30% new mate-
rials than its previous conference version. All the outcomes are not
published elsewhere at the same time of this submission.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Park, K., Kim, S., & Sohn, K. (2018). High-precision depth esti-
mation with the 3D lidar and stereo fusion. In 2018 IEEE Inter-
national Conference on Robotics and Automation (ICRA) (pp.
2156–2163). https:// doi. org/ 10. 1109/ ICRA. 2018. 84610 48

 2. Latif, R., & Saddik, A. (2019). Slam algorithms implementa-
tion in a UAV, based on a heterogeneous system: A survey.
In 2019 4th World Conference on Complex Systems (WCCS)
(pp. 1–6). https:// doi. org/ 10. 1109/ ICoCS. 2019. 89307 83

 3. Qian, L., Wu, J. Y., DiMaio, S. P., Navab, N., & Kazanzides,
P. (2020). A review of augmented reality in robotic-assisted
surgery. IEEE Transactions on Medical Robotics and Bionics,
2(1), 1–16. https:// doi. org/ 10. 1109/ TMRB. 2019. 29570 61

 4. Liu, M., Hou, Z., Sun, Z., Yin, N., Yang, H., Wang, Y., Chu, Z.,
& Kong, H. (2019) Campus guide: A lidar-based mobile robot.
In 2019 European Conference on Mobile Robots (ECMR) (pp.
1–6). https:// doi. org/ 10. 1109/ ECMR. 2019. 88709 16

 5. Liu, W., Gu, C., O’Neill, M., Qu, G., Montuschi, P., & Lombardi,
F. (2020). Security in approximate computing and approximate
computing for security: Challenges and opportunities. Proceed-
ings of the IEEE, 108(12), 2214–2231. https:// doi. org/ 10. 1109/
JPROC. 2020. 30301 21

 6. Roy, K., & Raghunathan, A. (2015). Approximate computing:
An energy-efficient computing technique for error resilient
applications. In 2015 IEEE Computer Society Annual Sympo-
sium on VLSI (pp. 473–475). https:// doi. org/ 10. 1109/ ISVLSI.
2015. 130

 7. Pandey, P., He, Q., Pompili, D., & Tron, R. (2018). Light-weight
object detection and decision making via approximate computing
in resource-constrained mobile robots. In 2018 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS) (pp.
6776–6781). https:// doi. org/ 10. 1109/ IROS. 2018. 85942 00

 8. Ibrahim, A., Osta, M., Alameh, M., Saleh, M., Chible, H., &
Valle, M. (2018) Approximate computing methods for embedded
machine learning. In 2018 25th IEEE International Conference on
Electronics, Circuits and Systems (ICECS) (pp. 845–848). https://
doi. org/ 10. 1109/ ICECS. 2018. 86178 77

 9. Agrawal, A., Choi, J., Gopalakrishnan, K., Gupta, S., Nair,
R., Oh, J., Prener, D.A., Shukla, S., Srinivasan, V., & Sura, Z.
(2016) Approximate computing: Challenges and opportunities.
2016 IEEE International Conference on Rebooting Computing
(ICRC) 1–8.

 10. Webster, E. A. G., Grant, L. A., & Henderson, R. K. (2012).
A high-performance single-photon avalanche diode in 130-nm
CMOS imaging technology. IEEE Electron Device Letters,
33(11), 1589–1591. https:// doi. org/ 10. 1109/ LED. 2012. 22147 60

 11. Aßmann, A., Stewart, B., Mota, J. F. C., & Wallace, A. M.
(2019) Compressive super-pixel lidar for high-framerate 3D depth
imaging. In 2019 IEEE Global Conference on Signal and Infor-
mation Processing (GlobalSIP) (pp. 1–5). https:// doi. org/ 10. 1109/
Globa lSIP4 5357. 2019. 89691 77

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/ICRA.2018.8461048
https://doi.org/10.1109/ICoCS.2019.8930783
https://doi.org/10.1109/TMRB.2019.2957061
https://doi.org/10.1109/ECMR.2019.8870916
https://doi.org/10.1109/JPROC.2020.3030121
https://doi.org/10.1109/JPROC.2020.3030121
https://doi.org/10.1109/ISVLSI.2015.130
https://doi.org/10.1109/ISVLSI.2015.130
https://doi.org/10.1109/IROS.2018.8594200
https://doi.org/10.1109/ICECS.2018.8617877
https://doi.org/10.1109/ICECS.2018.8617877
https://doi.org/10.1109/LED.2012.2214760
https://doi.org/10.1109/GlobalSIP45357.2019.8969177
https://doi.org/10.1109/GlobalSIP45357.2019.8969177

 Journal of Signal Processing Systems

1 3

 12. Nguyen, M. U., Dao, T. T., & Tang, V. H. (2018). Efficient depth
image reconstruction using accelerated proximal gradient method.
In 2018 10th International Conference on Knowledge and Systems
Engineering (KSE) (pp. 1–6). https:// doi. org/ 10. 1109/ KSE. 2018.
85733 61

 13. Aßmann A., Wu, Y., Stewart, B., & Wallace, A. M. (2021). Accel-
erated 3D image reconstruction for resource constrained systems.
In 2020 28th European Signal Processing Conference (EUSIPCO)
(pp. 565–569). https:// doi. org/ 10. 23919/ Eusip co479 68. 2020. 92877 49

 14. Gürel, N. M., Kara, K., Stojanov, A., Smith, T., Lemmin, T.,
Alistarh, D., Püschel, M., & Zhang, C. (2020). Compressive
sensing using iterative hard thresholding with low precision data
representation: Theory and applications. IEEE Transactions on
Signal Processing, 68, 4268–4282. https:// doi. org/ 10. 1109/ TSP.
2020. 30103 55

 15. Wills, A., Mills, A., & Ninness, B. (2011). FPGA implementation
of an interior-point solution for linear model predictive control.
18th IFAC World Congress.

 16. Wu, Y., Mota, J. F. C., & Wallace, A. M. (2020). Approximate
lasso model predictive control for resource constrained systems.
In 2020 Sensor Signal Processing for Defence Conference (SSPD)
(pp. 1–5). https:// doi. org/ 10. 1109/ SSPD4 7486. 2020. 92720 00

 17. Wu, Y., Assmann, A., Stewart, B., & Wallace, A. M. (2021). Energy
efficient approximate 3d image reconstruction. IEEE Transactions
on Emerging Topics in Computing, 1. https:// doi. org/ 10. 1109/
TETC. 2021. 31164 71

 18. Abdelfattah, A., Anzt, H., Boman, E. G., Carson, E., Cojean, T.,
Dongarra, J., Fox, A., Gates, M., Higham, N. J., Li, X. S., Loe, J.,
Luszczek, P., Pranesh, S., Rajamanickam, S., Ribizel, T., Smith,
B. F., Swirydowicz, K., Thomas, S., Tomov, S., Tsai, Y. M., &
Yang, U. M. (2021). A survey of numerical linear algebra methods
utilizing mixed-precision arithmetic. The International Journal
of High Performance Computing Applications, 35(4), 344–369.
https:// doi. org/ 10. 1177/ 10943 42021 10033 13

 19. Carson, E., & Higham, N. (2018). Accelerating the solution of
linear systems by iterative refinement in three precisions. SIAM
Journal on Scientific Computing, 40, 817–847. https:// doi. org/ 10.
1137/ 17M11 40819

 20. Hameed, R., Qadeer, W., Wachs, M., Azizi, O., Solomatnikov, A.,
Lee, B. C., Richardson, S., Kozyrakis, C., & Horowitz, M. (2010).
Understanding sources of inefficiency in general-purpose chips.
SIGARCH Computer Architecture News, 38(3), 37–47. https:// doi.
org/ 10. 1145/ 18160 38. 18159 68

 21. Hernández-Marín, S., Wallace, A. M., & Gibson, G. J. (2007).
Bayesian analysis of lidar signals with multiple returns. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
29(12), 2170–2180. https:// doi. org/ 10. 1109/ TPAMI. 2007. 1122

 22. Wallace, A. M., Ye, J., Krichel, N. J., McCarthy, A., Collins, R.
J., & Buller, G. S. (2010). Full waveform analysis for long-range
3D imaging laser radar. EURASIP Journal on Advances in Signal
Processing. https:// doi. org/ 10. 1155/ 2010/ 896708

 23. Halimi, A., Tobin, R., McCarthy, A., McLaughlin, S., & Buller, G. S.
(2017) Restoration of multilayered single-photon 3D Lidar images. In
25th IEEE European Signal Processing Conference (EUSIPCO) (pp.
708–712). https:// doi. org/ 10. 23919/ EUSIP CO. 2017. 80812 99

 24. Tachella, J., Altmann, Y., Mellado, N., McCarthy, A., Tobin, R.,
Buller, G. S., Tourneret, J.-Y., & McLaughlin, S. (2019). Real-
time 3D reconstruction from single-photon lidar data using plug-
and-play point cloud denoisers. Nature Communications, 10(1),
4984. https:// doi. org/ 10. 1038/ s41467- 019- 12943-7

 25. Patanwala, S. M., Gyongy, I., Dutton, N. A. W., Rae, B. R., &
Henderson, R .K. (2019). A reconfigurable 40nm CMOS SPAD
array for lidar receiver validation. In International Image Sensor
Workshop (IISW).

 26. Henderson, R. K., Johnston, N., Hutchings, S. W., Gyongy, I.,
Abbas, T. A., Dutton, N., Tyler, M., Chan, S., & Leach, J. (2019) 5.7

a 256×256 40nm/90nm CMOS 3D-stacked 120db dynamic-range
reconfigurable time-resolved SPAD imager. In 2019 IEEE Inter-
national Solid- State Circuits Conference - (ISSCC) (pp. 106–
108). https:// doi. org/ 10. 1109/ ISSCC. 2019. 86623 55

 27. Candès, E., & Romberg, J. (2007). Sparsity and incoherence in
compressive sampling. Inverse Problems, 23(3), 969–985. https://
doi. org/ 10. 1088/ 0266- 5611/ 23/3/ 008

 28. Donoho, D. L. (2006). Compressed sensing. IEEE Transactions on
Information Theory, 52(4), 1289–1306. https:// doi. org/ 10. 1109/
TIT. 2006. 871582

 29. Tibshirani, R. (1996). Regression shrinkage and selection via the
lasso. Journal of the Royal Statistical Society. Series B (Methodo-
logical) 58, 267–288. https:// doi. org/ 10. 2307/ 23461 78

 30. Boyd, S., Parikh, N., Chu, E., & Peleato, B. (2011) Distributed
optimization and statistical learning via the alternating direction
method of multipliers. Foundations and Trends in Machine Learn-
ing, 3(1), 1–122 arXiv: 03070 85 [cond-mat]. https:// doi. org/ 10.
1561/ 22000 00016

 31. Parikh, N., & Boyd, S. (2014). Proximal algorithms, 1(3), 127–
239. https:// doi. org/ 10. 1561/ 24000 00003

 32. Flegar, G., Scheidegger, F., Novaković, V., Mariani, G., Tom’s,
A. E., Malossi, A. C. I., & Quintana-Ortí, E. S. (2019). Floatx: A
c++ library for customized floating-point arithmetic. ACM Trans-
actions on Mathematical Software (TOMS), 45(4). https:// doi. org/
10. 1145/ 33680 86

 33. Muller, J.-M., Brunie, N., de Dinechin, F., Jeannerod, C.-P.,
Joldes, M., Lefvre, V., Melquiond, G., Revol, N., & Torres, S.
(2018). Handbook of floating-point arithmetic. Birkhäuser. https://
doi. org/ 10. 1007/ 978-0- 8176- 4705-6

 34. Langou, J., Langou, J., Luszczek, P., Kurzak, J., Buttari, A., &
Dongarra, J. (2006) Exploiting the performance of 32 bit floating
point arithmetic in obtaining 64 bit accuracy (revisiting iterative
refinement for linear systems). In Proceedings of the 2006 ACM/
IEEE Conference on Supercomputing. SC ’06 (p. 113). Associa-
tion for Computing Machinery, New York, NY, USA. https:// doi.
org/ 10. 1145/ 11884 55. 11885 73

 35. Yu, H., Han, Q., Li, J., Shi, J., Cheng, G.-L., & Fan, B.
(2020) Search what you want: Barrier panelty NAS for mixed
precision quantization. ArXiv abs/2007.10026.

 36. Smith, S. W. (1997). The scientist and engineer’s guide to digital
signal processing. California Technical Publishing, USA.

 37. Boyd, S., & Vandenberghe, L. (2004). Convex optimization. Cam-
bridge University Press. https:// doi. org/ 10. 1017/ CBO97 80511 804441

 38. Beck, A., & Teboulle, M. (2009). Gradient-based algorithms with
applications to signal-recovery problems. Cambridge University
Press. https:// doi. org/ 10. 1017/ CBO97 80511 804458. 003

 39. Xilinx. (2020). Vivado design suite user guide: High-level syn-
thesis. Accessed on 11/10/2020 https:// www. xilinx. com/ suppo rt/
docum entat ion/ sw_ manua ls/ xilin x2020_1/ ug902- vivado- high-
level- synth esis. pdf

 40. Silberman, N., Hoiem, D., Kohli, P., & Fergus, R. (2012). Indoor
segmentation and support inference from RGBD images. In A.
Fitzgibbon, S. Lazebnik, P. Perona, Y. Sato, & C. Schmid (Eds.),
Computer Vision – ECCV 2012 (pp. 746–760). Springer, Berlin,
Heidelberg.

 41. Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P. (2004)
Image quality assessment: from error visibility to structural
similarity. IEEE Transactions on Image Processing, 13(4), 600–
612. https:// doi. org/ 10. 1109/ TIP. 2003. 819861

 42. Gaidon, A., Wang, Q., Cabon, Y., & Vig, E. (2016). Virtualworlds
as proxy for multi-object tracking analysis. In 2016 IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR) (pp.
4340–4349). IEEE Computer Society, Los Alamitos, CA,
USA. https:// doi. org/ 10. 1109/ CVPR. 2016. 470

 43. Chhabra, P., Maccarone, A., McCarthy, A., Buller, G., & Wallace,
A. (2016). Discriminating underwater LiDAR target signatures

https://doi.org/10.1109/KSE.2018.8573361
https://doi.org/10.1109/KSE.2018.8573361
https://doi.org/10.23919/Eusipco47968.2020.9287749
https://doi.org/10.1109/TSP.2020.3010355
https://doi.org/10.1109/TSP.2020.3010355
https://doi.org/10.1109/SSPD47486.2020.9272000
https://doi.org/10.1109/TETC.2021.3116471
https://doi.org/10.1109/TETC.2021.3116471
https://doi.org/10.1177/10943420211003313
https://doi.org/10.1137/17M1140819
https://doi.org/10.1137/17M1140819
https://doi.org/10.1145/1816038.1815968
https://doi.org/10.1145/1816038.1815968
https://doi.org/10.1109/TPAMI.2007.1122
https://doi.org/10.1155/2010/896708
https://doi.org/10.23919/EUSIPCO.2017.8081299
https://doi.org/10.1038/s41467-019-12943-7
https://doi.org/10.1109/ISSCC.2019.8662355
https://doi.org/10.1088/0266-5611/23/3/008
https://doi.org/10.1088/0266-5611/23/3/008
https://doi.org/10.1109/TIT.2006.871582
https://doi.org/10.1109/TIT.2006.871582
https://doi.org/10.2307/2346178
http://arxiv.org/abs/0307085
https://doi.org/10.1561/2200000016
https://doi.org/10.1561/2200000016
https://doi.org/10.1561/2400000003
https://doi.org/10.1145/3368086
https://doi.org/10.1145/3368086
https://doi.org/10.1007/978-0-8176-4705-6
https://doi.org/10.1007/978-0-8176-4705-6
https://doi.org/10.1145/1188455.1188573
https://doi.org/10.1145/1188455.1188573
https://doi.org/10.1017/CBO9780511804441
https://doi.org/10.1017/CBO9780511804458.003
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2020_1/ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2020_1/ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2020_1/ug902-vivado-high-level-synthesis.pdf
https://doi.org/10.1109/TIP.2003.819861
https://doi.org/10.1109/CVPR.2016.470

Journal of Signal Processing Systems

1 3

using sparse multi-spectral depth codes. In 2016 Sensor Signal
Processing for Defence, SSPD 2016. https:// doi. org/ 10. 1109/
SSPD. 2016. 75905 95

 44. Chhabra, P., Maccarone, A., McCarthy, A., Buller, G., & Wallace,
A. (2016). Discriminating underwater lidar target signatures using
sparse multi-spectral depth codes. In 2016 Sensor Signal Process-
ing for Defence (SSPD) (pp. 1–5). https:// doi. org/ 10. 1109/ SSPD.
2016. 75905 95

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Yun Wu received the B.Sc. degree
in electronic and information
engineering from Dalian Nation-
alities University, Dalian, China,
in 2003, the M.Sc. degree in cir-
cuits and system from Hunan
University, Changsha, China, in
2007, the M.Sc. degree in radio
frequency communication sys-
tems from the University of
Southampton, Southampton,
U.K., in 2008, and the Ph.D.
degree in electronic engineering
from Queen's University Belfast,
Belfast, U.K., in 2014. He is cur-

rently associate professor and UDRC research associate with Heriot-
Watt University. His research interests include wireless/image signal
processing, reconfigurable architecture synthesis, and approximate
computing.

Andrew M. Wallace received his
BSc and PhD degrees from the
University of Edinburgh in 1972
and 1975 respectively. He is an
Emeritus Professor of Signal and
Image Processing at Heriot-Watt
University. His research interests
include LiDAR and 3D vision,
image and signal processing, and
accelerated computing. He has
published extensively and has
secured funding from EPSRC,
the EU and other sponsors. He is
a Chartered Engineer and a Fel-
low of the Institute of Engineer-
ing Technology.

João F. C. Mota received the
M.Sc. degree and the Ph.D.
degree in Electrical and Com-
puter Engineering from the
Technical University of Lisbon,
Portugal, in 2008 and 2013,
respectively. He also received
the Ph.D. degree in Electrical
and Computer Engineering from
Carnegie Mellon University, PA,
USA, in 2013.

From 2013 to 2016, he was Senior Research Associate at University
College London, London, U.K. In 2017, he became Assistant Professor
in the School of Engineering and Physical Sciences at Heriot-Watt Uni-
versity, Edinburgh, U.K., where he is also affiliated with the Institute of
Sensors, Signals, and Systems. His current research interests include
theoretical and practical aspects of high-dimensional data processing,
inverse problems, optimization theory, machine learning, data science,
and distributed information processing and control. He was the recipi-
ent of the 2015 IEEE Signal Processing Society Young Author Best
Paper Award for the paper “Distributed Basis Pursuit”, published in
IEEE Transactions on Signal Processing.

Andreas Aßmann received the
BEng (Hons) degree in Electri-
cal and Mechanical Engineering
from the University of Strath-
clyde, Glasgow in 2016 and the
Engineering Doctorate (EngD)
degree in Applied Photonics at
Heriot-Watt University, Edin-
burgh in 2021. Since November
2020 he is a System Architect
with STMicroelectronics R&D
Ltd. in Edinburgh, Scotland. His
research interests include effi-
cient signal processing of active
imaging systems and computer
vision.

Brian D. Stewart received his BSc
in Electronics and PhD in Com-
puter Vision from Dundee Uni-
versity in 1989 and 1992 respec-
tively. During his time at
STMicroelectronics he has
focused on software develop-
ment, modelling and image/sig-
nal processing and is a Design
Architect within Imaging Divi-
sion in Edinburgh, Scotland.

https://doi.org/10.1109/SSPD.2016.7590595
https://doi.org/10.1109/SSPD.2016.7590595
https://doi.org/10.1109/SSPD.2016.7590595
https://doi.org/10.1109/SSPD.2016.7590595

	Efficient Reconfigurable Mixed Precision Solver for Compressive Depth Reconstruction
	Abstract
	1 Introduction
	2 Background
	2.1 Parallel Depth Reconstruction
	2.2 Mixed Precision and Tuning

	3 Mixed Precision Framework
	3.1 Mixed Precision ADMM
	3.2 Mixed Precision PGD
	3.3 Mixed Precision Accelerator

	4 Evaluation
	4.1 Depth Reconstruction Accuracy
	4.2 Solver Accelerators

	5 Conclusions
	References

