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Abstract: There has been a strong interest in emergency planning in response to an attack or
accidental release of harmful chemical, biological, radiological or nuclear substances. Under such
circumstances, it is of paramount importance to determine the location and release rate of the
hazardous source to forecast the future harm it may cause and employ methods to minimize the
disturbance. In this paper, a sensor data collection strategy is proposed whereby an autonomous
mobile sensor is guided to address such a problem with a high degree of accuracy and in a short
amount of time. First, the parameters of the release source are estimated using the Markov
chain Monte Carlo sampling approach. The most informative manoeuvre from the set of possible
choices is then selected using the concept of maximum entropy sampling. Numerical simulations
demonstrate the superior performance of the proposed algorithm compared to traditional
approaches in terms of estimation accuracy and the number of measurements required.
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Optimal experiment design; Statistical inference; Motion planning

1. INTRODUCTION

In the event of an accidental or intentional release of a
hazardous contaminant into the atmosphere, it is impor-
tant to predetermine affected areas for a rapid emergency
response. The spread of particles into the atmosphere can
be estimated using atmospheric transport and dispersion
(ATD) models (Panofsky and Dutton (1984)). Important
input parameters to such models include meteorological
variables and an estimate of the source term. The source
term can feature a range of variables; however, in this work
we focus on the location and release rate of the source.

Source seeking algorithms are the intuitive approach to
determine the location of an emitting source by moving
towards it. Biologically inspired strategies based on the
male silkworm moth in search for a female and the for-
aging behaviour of Escherichia coli bacteria have been
popular in the literature (Kowadlo and Russell (2008)).
These algorithms find the source by climbing the chemical
concentration gradient (chemotaxis). This proved to be a
suitable approach under short distances from the source
where concentration gradients are high. Recently, more
complex probabilistic algorithms have been developed to
handle difficult scenarios where sensing is noisy and spo-
radic. For instance, Vergassola et al. (2007) used Bayesian
inference to update a probabilistic map of source loca-
tion. The searcher was moved to maximise the expected
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reduction in entropy of the posterior distribution. Several
papers have since been produced validating the approach
and proposing extensions (Martin Moraud and Martinez
(2010); Eggels et al. (2016)). A lacking feature within
source seeking algorithms is an estimate of the release
rate of a source which will be essential for future hazard
prediction.

Source term estimation (STE) algorithms estimate at
minimum the location and release rate of the source;
nonetheless, in the literature, several additional uncertain
parameters have been included such as meteorological
variables (Allen et al. (2007)) and stochastic diffusion
parameters (Senocak et al. (2008)). The most popular
approach to STE features a static network of concentration
sensors spread over a large region on the ground. Source
estimation is then carried out using optimization (Long
et al. (2010); Thomson et al. (2007)) or Bayesian inference
algorithms (Keats et al. (2007); Senocak et al. (2008))
where inferred source parameters are run in a forward
ATD model to generate predicted concentrations that are
then compared with the data using a cost or likelihood
function. A recent study by Platt and Deriggi (2010) based
on data from the FFT07 experiment demonstrated some of
the limitations of theses approaches when applied to real
data. Large errors were witnessed in relatively simplified
conditions.

An alternative to large static networks of sensors are
sensor equipped unmanned vehicles. Mobile sensors can
estimate the source term more efficiently as they can be
rapidly deployed and collect observational data from more



informative locations. Kuroki et al. (2010) used an expert
system for sensor motion planning, while the genetic algo-
rithm from Long et al. (2010) estimated the source term
of the dispersing contaminant. Ristic et al. (2010) used
mobile sensors to estimate the source term of a radiolog-
ical release. Estimation was carried out using a particle
filter and the next sampling location was selected based
on maximizing the fisher information of the posterior.
Madankan et al. (2014) used polynomial chaos quadrature
to estimate source parameters of an atmospheric release,
where dynamic programming was used to guide the sensor
to the most informative measurement locations based on
maximising the mutual information.

In this work, an alternative approach to sensor motion
planning for STE is proposed, inspired by work from the
field of optimal experiment design known as Bayesian
adaptive exploration (BAE) Loredo (2004). The BAE pro-
vides an iterative observation-inference-design framework
for probabilistic and on-line experimental design. Keats
et al. (2010) first applied the BAE method to the prob-
lem of STE for optimal placement of a single additional
static sensor to an existing static sensor network. This
BAE approach has been adapted in this work for mo-
tion planning of a mobile sensor to manoeuvre to the
most informative measurement locations, which combines
search for the contaminant source and STE under a sin-
gle procedure. The proposed algorithm is compared with
traditional techniques under various levels of noise while
showing robustness to large amounts of noise as a result
of Bayesian sampling techniques.

This paper is organised as follows. In Section 2, the prob-
lem is presented including information about the domain
and the forward dispersion model used. In Section 3, the
adaptive Bayesian sensor motion planning is described. In
Section 4, the computational algorithms that were used
to implement the conceptual solution are described. An
illustrative run and Monte Carlo simulations with other
strategies are given in Section 5. Finally, the paper is
concluded and future work is proposed in Section 6.

2. PROBLEM DESCRIPTION

When signs of a possible harmful contaminant release
are brought to the attention of emergency services, the
responders must determine the location of the emitting
source, and predict the spread of contamination in order
to react efficiently. To avoid putting the emergency re-
sponders in danger, an unmanned vehicle equipped with
an appropriate sensor can be sent into the search area
to assess the severity of contamination. The vehicle is to
navigate within the search area collecting concentration
measurements which will be used in an estimation algo-
rithm to determine the source term. Sensor measurements
can require a long sampling time to gain an accurate
concentration reading, so it is important to need as few
as possible, whilst producing a high level of STE accuracy.
Our aim is to rapidly gain a reliable estimate of the source
term for its use in an ATD model.

In this work, the dispersion of contaminant is assumed
to have reached a steady state. Due to its low computa-
tional burden and reasonable accuracy under short ranges,
the Gaussian plume dispersion equation (Panofsky and

Dutton (1984)) is used as the forward ATD model in the
estimation of source parameters:
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where C(xk, yk, zk, xs, ys, zs, qs) is the concentration at a
particular location (xk, yk, zk) from a source positioned
at (xs, ys, zs) with release rate qs. ū is the mean wind
speed. σy, σz are turbulent diffusion parameters that are
estimated based on Pasquill’s atmospheric stability class
(Panofsky and Dutton (1984)).

Most meteorological variables can be known within a
certain degree of accuracy from existing sensors across the
globe. We assume that these variables have been provided
and that the source is located on the ground (zs = 0). The
source term parameters remaining to be estimated are the
location (xs, ys) and the release rate (qs) of the source. We
assume the source parameters are within a search space Ω.
The source term vector θ is defined as:

θ = [xs, ys, qs]T where (xs, ys, qs) ∈ Ω. (2)

We assume that the vehicle knows its location (xk, yk) at
the current time step k and it is equipped with the ap-
propriate concentration sensor. The available manoeuvres
for the vehicle are Ak = {↑, ↓,←,→}, referring to a move
up, down, left or right, by a fixed jump size. The goal of
the algorithm is to choose the manoeuvre ak ∈ Ak that
provides the most information about the unknown source
term θ.

3. ADAPTIVE BAYESIAN SENSOR MOTION
PLANNING

Bayesian adaptive exploration, proposed by Loredo (2004),
is adapted for mobile sensor motion planning. For the
remainder of the paper, the approach shall be referred
to as adaptive Bayesian motion planning (ABMP). The
process iterates an observation, inference and design cycle
illustrated in Fig. 1.

Fig. 1. Adaptive Bayesian motion planning algorithm
flowchart

The observation phase is rather simple and essentially
involves taking a measurement of the phenomena. Which
is the contaminant concentration in this paper. In the
inference phase, Bayesian inference is used to gain an
estimate of the source term to reveal the current state
of knowledge about the release. During the design phase,
the optimal manoeuvre is selected, which is expected to



yield the most information for the next inference cycle.
The optimal manoeuvre is determined using the idea of
maximum entropy sampling, where it is believed the most
is learnt by sampling from where the least is known,
(Sebastiani and Wynn (2000)). In the following section,
the steps used are described in more detail.

3.1 Observation

Concentration observations Dk and predictions Ck are
assumed to be composed of the true signal D̄true,k and
noise νk.

Dk = Ck(θtrue) + νk = D̄true,k + νk. (3)

Noise can arise from errors in meteorological data, sensing,
atmospheric turbulence or modelling discrepancies (Rao
(2005)). In this work, meteorological data and errors due
to atmospheric turbulence are neglected. The sensing and
modelling errors are assumed to be normally distributed
with zero mean.

3.2 Inference

In such a scenario where input variables and underlying
models are uncertain, a probabilistic approach is preferred
over optimisation so that uncertainty in the source term
can be captured within a posterior probability density
function (pdf). Bayes’ theorem is used to define the
posterior pdf of the source term θ given the observations
D. In this work, Bayes’ theorem is expressed as (4), where
I represents prior information about the release and the
ATD model used. Essentially, this means that the posterior
distribution is proportional to the product of the prior and
the likelihood.

P (θ|D, I) ∝ P (θ|I)P (D|θ, I). (4)

The prior on all parameters is assumed to be uniformly
distributed within the search domain Ω. A Gaussian form
of the likelihood is used similarly to Keats et al. (2007):
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where Di are the observed concentration data, and
C(xi, yi, θi) are predicted concentrations obtained by run-
ning inferred parameters θ in an ATD model (1). σi refers
to the noise variance, which has a strong effect on the
acceptance rate of the algorithm. The Gaussian likelihood
allows measurements of zero to be easily incorporated into
the likelihood function without the additional treatment
that is needed in a log-normal form (Senocak et al. (2008)).

3.3 Design

The goal of the design phase is to choose the manoeuvre ak
that is expected to be the most informative, by following
a similar approach described in (Loredo (2004)):

a∗k = arg max
ak∈Ak

{EI (ak)}, (6)

where EI (ak) is the expected information provided by
taking manoeuvre ak. This is defined as the information
gained about the posterior distribution given the new data
dak

k , multiplied by the probability of the new data (7):
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To quantify the measure of information I , several deriva-
tions have been proposed from the literature on informa-
tion theory. In this work, the negative Shannon entropy
has been used given by the following Eq. (8). This quantity
of information provides a measure of the spread of a
distribution:

I (θ|d,D, I) =

∫
P (θ|d,D, I) logP (θ|d,D, I) dθ, (8)

where P (θ|d,D, I) is the posterior for source term param-
eters considering future data d. In order to represent (7)
in another form, let us look at the joint distribution for θ
and d and using the product rule to factor it as given:

I (d
ak
k
, θk) =

∫ ∫
P (d

ak
k
, θk|D1:k, I1:k)

× logP (d
ak
k
, θk|D1:k, I1:k) dθkdd

ak
k

=

∫ ∫
P (d

ak
k
, θk|D1:k, I1:k) logP (θk|D1:k, I1:k) dθkdd

ak
k

+

∫ ∫
P (d

ak
k
, θk|D1:k, I1:k) logP (d

ak
k
|θk, D1:k, I1:k) dθkdd

ak
k

= I (θk|D1:k, I1:k)+

∫
P (θk|D1:k, I1:k)I (d

ak
k
|θk, D1:k, I1:k) dθk.

(9)

Repeating the above calculation but switching the order
of factorising d and θ gives:
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Equating Eqs. (9) and (10) and noting that the integral in
(10) is simply the expected information from (7) yields:

EI (ak) = I (θk|D1:k, I1:k)

+

∫
P (θk|D1:k, I1:k)I (d
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The first term in (11) refers to the information in the
posterior distribution from the previous time step which
is independent from the future measurement, so it shall
remain constant. The second term refers to the average
information contained in the sampling distribution. In
cases where the noise variance varies with the signal, this
is an important quantity; however, if the noise is constant
regardless of the signal, then this term is also constant.
The final term is the entropy (considering a minus sign) in
the predictive distribution which needs to be calculated.
Using (8), the expected information can be represented as:

EI (ak) = ck −I (d
ak
k
|D1:k, I1:k)

= ck −
∫

P (d
ak
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where ck represents a constant formed from the first two
terms of (11). In order to choose the most informative ma-
noeuvre using (6), we need to maximise (12). This means
that the best move is to go toward the location whose pre-
dictive distribution has maximum entropy (equivalently,
the least information); it is called as the principle of max-
imum entropy sampling (Sebastiani and Wynn (2000)). In
other words, the most informative manoeuvre is where the
predictive distribution has the most spread and uninfor-
mative.



4. COMPUTATIONAL APPROACH

The inference and the design stages of the algorithm
involve solving multidimensional integrals that cannot
be done analytically. In this section, the computational
approach used to implement the conceptual solution for
ABMP is described.

4.1 Inference

Since the posterior distribution of source parameters (4)
cannot be obtained analytically, it shall be approximated
using a numerical techniques such as Monte Carlo meth-
ods. However, as it is computationally expensive, an effi-
cient sampling technique is required to approximate the
posterior distribution. Within the literature on STE, sev-
eral techniques have been used: i) Markov chain Monte
Carlo (MCMC) (Keats et al. (2007); Senocak et al.
(2008)); ii) sequential Monte Carlo (SMC) (Johannesson
et al. (2005)); and iii) differential evolution Monte Carlo
(DEMC) (Robins et al. (2009)). In this work, we use the
Metropolis-Hastings MCMC algorithm (Hastings (1970)).
As this is a popular approach used in the majority of
MCMC based STE algorithms, it will not be described any
further in this paper. For more information on MCMC for
STE, the reader is directed to Keats et al. (2007).

The output of the MCMC algorithm is a posterior dis-
tribution for the source parameters (4), represented by
a Markov chain. In subsequent iterations of the ABMP
algorithm, a new Markov chain is initiated each time
new data has been collected. The starting point of the
new Markov chain is at the mean value of each source
parameter from the previous iteration.

4.2 Design

Once a posterior distribution of source parameters has
been obtained using MCMC; The pdf in (12) can be
approximated using a set of N samples {θnk}Nn=1 for which
the information can be estimated:
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The average information from a set of samples for a
specific manoeuvre is used as a measure of the expected
information (Loredo (2004)):

EI (ak) ≈ −
1

M

M∑
m=1

log P̄ (d
ak,m
k

). (14)

The overall ABMP algorithm is described in Algorithm 1.

5. NUMERICAL SIMULATIONS

5.1 Illustrative run

An example run of the algorithm at various time steps
is presented in Fig. 2. Synthetic data were created using
the Gaussian plume dispersion model (1) infected with
normally distributed noise with mean zero and standard
deviation equal to 50% of the signal. In the early stages of

Algorithm 1 Adaptive Bayesian motion planning

1: for k = 1,2,..., max time steps do
2: Dk ← take new measurment
3: P (θk|D1:k, I1:k)← run MCMC algorithm
4: {θnk} ← draw N samples from above distribution
5: choose integer M ≤ N
6: for all ak ∈ Ak do
7: consider potential position (xak

k , yak

k )
8: for m = 1:M do
9: θak,m

k ← draw uniformly from {θnk}
10: dak,m

k ← sample from P (d|θak,m
k , Iak,m

k )
11: determine P̄ (dak,m

k )← Eq. (13)

12: determine EI(ak)← Eq. (14)

13: a∗k = arg max{EI (ak)} ← new manoeuvre
14: (xk+1, yk+1) = (xk, yk) + a∗k ← new position

the simulation, the sensor moved crosswind before moving
towards the location of the source. In simulations under
higher noise, as illustrated in Fig. 3, the algorithm was
naturally more explorative without any tuning of param-
eters. This showed a strong balance between explorative
and exploitative behaviour which is crucial for efficient yet
robust autonomous search behaviour.

By using ABMP, the unmanned vehicle is capable of esti-
mating the source term regardless of its starting location
or the location of the plume, provided it existed within
the search domain. Towards the end of the search, the
acceptance rate of the MCMC inference decreases, this is
not a problem as the results produced are still accurate.
However, addressing this in the future could yield a better
approximation of the posterior distribution.

5.2 Monte Carlo comparison

Monte Carlo simulations were used to assess the perfor-
mance of the algorithm in comparison to a uniform sweep,
random movement and a source seeking algorithm. The
source seeking algorithm followed the ABMP procedure
partially; however, it moves towards the current estimate
of the source position based on the mean values from
the inference algorithm. Examples of the paths of each
are shown in Fig. 4 under identical conditions as Fig. 2.
For the Monte Carlo comparisons, the Gaussian plume
equation (1) was used to generate synthetic data infected
with normally distributed noise with mean zero and stan-
dard deviations equal to 10% and 50% of the signal. The
contaminant plume was generated at random locations,
with randomly varying wind direction. The results of the
average root mean squared error (RMSE) for the mean
parameter estimates after 100 Monte Carlo simulations are
presented in Table 1.

Plots of the number of measurements versus the average
RMSE for the Monte Carlo simulations subject to 10%
normally distributed noise have been plotted in Fig. 5. The
graphs clearly demonstrate the overall benefit with regards
to the accuracy and convergence time of the algorithm in
estimation of the source term parameters.

6. CONCLUSIONS AND FUTURE WORK

A motion planning strategy based on adaptive Bayesian
exploration is used to guide a mobile sensor to the most



a) 2 iterations b) 5 iterations

c) 7 iterations d) 10 iterations

Fig. 2. Example run of the ABMP algorithm. The shaded green region represents the contaminant with source position
indicated by the black circle. Blue dots represent the Markov chain posterior for source location. Red crosses
represent the measuring locations of the sensor following the red lined vehicle path.

Table 1. Performance comparison over a hundred Monte Carlo simulations

Strategy Random search Uniform search Source seeking ABMP
Noise 10% 50% 10% 50% 10% 50% 10% 50%
RMSE in x (m) 11.96 15.54 7.50 11.16 9.35 13.42 1.74 5.95
RMSE in y (m) 12.10 14.63 7.34 8.79 9.42 13.09 1.95 6.67
RMSE in q (g/s) 0.29 0.33 0.21 0.30 0.26 0.32 0.15 0.28
Number of moves 21.55 22.89 19.08 20.65 12.71 12.87 10.68 11.71

informative sensing locations for STE of a harmful at-
mospheric release. MCMC was used for inference of the
source parameters whilst motion planning was achieved
through posterior sampling to find the location of max-
imum entropy. The approach is capable of handling a
high amount of noise and efficiently finds the source even
under poor starting positions outside of the contaminated

Fig. 3. Example paths of ABMP under various levels of
noise (two 30% paths are generated from different
initial positions, indicated by coloured diamonds).

area. Simulation results demonstrated the performance
improvements of the proposed approach compared to tra-
ditional methods. In future work, it will be important to
consider the more probable scenario where the dispersion
of contaminant is still evolving. This will result in an
expansion of the parameter space in the inference phase
of the algorithm, greatly increasing the complexity of the
problem. In such a scenario, it will be useful to extend
the method to intelligently guide multiple cooperating
vehicles. Other useful extensions include: i) adding vehicle
dynamics considerations to the algorithm; ii) a multiple
step ahead strategy (however, the performance benefit
may be outweighed by computational expense); and iii)
to overcome the low acceptance rate towards the end
of the search, an adaptive inference algorithm shall be
implemented to accompany the changing input data.
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