
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/322927834

Area-Energy Aware Dataflow Optimisation of Visual Tracking Systems

Conference Paper · May 2018

CITATIONS

0
READS

74

5 authors, including:

Some of the authors of this publication are also working on these related projects:

Embedded Platforms for Image Processing Systems View project

Computational thinking and programming View project

Paulo Garcia

Carleton University

30 PUBLICATIONS   44 CITATIONS   

SEE PROFILE

Deepayan Bhowmik

University of Stirling

42 PUBLICATIONS   229 CITATIONS   

SEE PROFILE

Andrew M Wallace

Heriot-Watt University

175 PUBLICATIONS   1,923 CITATIONS   

SEE PROFILE

Robert Stewart

Heriot-Watt University

22 PUBLICATIONS   72 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Deepayan Bhowmik on 04 February 2018.

The user has requested enhancement of the downloaded file.



Area-Energy Aware Dataflow Optimisation of
Visual Tracking Systems

Paulo Garcia1, Deepayan Bhowmik2, Andrew Wallace1,
Robert Stewart3, and Greg Michaelson3

1 School of Engineering & Physical Sc., Heriot-Watt University, Edinburgh, EH14 4AS, U.K.
2 Department of Computing, Sheffield Hallam University, Sheffield, S1 1WB, U.K.

3 School of Mathematical & Computer Sc., Heriot-Watt University, Edinburgh EH14 4AS, U.K.
{p.garcia, a.m.wallace, r.stewart, g.michaelson}@hw.ac.uk.

deepayan.bhowmik@shu.ac.uk

Abstract. This paper presents an orderly dataflow-optimisation approach suit-
able for area-energy aware computer vision applications on FPGAs. Vision sys-
tems are increasingly being deployed in power constrained scenarios, where the
dataflow model of computation has become popular for describing complex algo-
rithms. Dataflow model allows processing datapaths comprised of several inde-
pendent and well defined computations. However, compilers are often unsuccess-
ful in identifying domain-specific optimisation opportunities resulting in wasted
resources and power consumption. We present a methodology for the optimisa-
tion of dataflow networks, according to patterns often found in computer vision
systems, focusing on identifying optimisations which are not discovered automat-
ically by an optimising compiler. Code transformation using profiling and refac-
toring provides opportunities to optimise the design, targeting FPGA implemen-
tations and focusing on area and power abatement. Our refactoring methodology,
applying transformations to a complex algorithm for visual tracking resulted in
significant reduction in power consumption and resource usage.

1 Introduction

The dataflow model of computation has become popular in the image processing/com-
puter vision domain for describing complex algorithms [14]. Currently, several different
languages and compilers exist for myriad implementation platforms, e.g., processor ar-
chitectures, GPUs and FPGAs [6], as well as heterogeneous combinations. The compu-
tation model, i.e., independent, parallel actors encapsulating computations, connected
to form a dataflow network, is ideal for separation of concerns, computational compo-
sition and code re-use. In computer vision, where several low level image processing
patterns are frequently re-used [13], a dataflow model allows expressing an algorithm as
a processing datapath comprised of several independent and well defined computations.

When implementing simple algorithms, where simple means static complexity, state-
less computations, predictable runtimes and no feedback loops, it is straightforward for
a dataflow compiler to analyse the code and identify optimisation opportunities [16];
and refactoring the dataflow network in order to optimise particular metric(s), e.g., area,
power, performance. However, contemporary computer vision algorithms are, more of-
ten than not, dynamic in complexity, stateful, variable in runtime and result in dataflow



2

networks with feedback loops [15]; thus, they exhibit properties which hinder compiler
optimisations [11]: it is left to the designer to manually optimise for the given metrics,
which is a non-trivial task in the lack of a formally defined methodology.

Literature suggests generic dataflow specific optimizations that are often non-domain
specific and hence do not consider any common patterns in related algorithms. For ex-
ample, Hueske et al. [5] leverage static code analysis to extract information from Map-
Reduce-style user-defined functions where the approach is only applicable to Map-
Reduce-style code. Based on the post-processing of dataflow execution traces, Brunet et
al. [2] present a methodology that enables designers to make principled choices in the
design space focusing solely on buffer sizes. Schulte et al. [12] have identified the prob-
lem of power optimizations in dataflow and researched the use of genetic optimization
algorithms for software implementations, but did not consider hardware implementa-
tions. Kim et al. [7] presented a framework for algorithm acceleration from the dataflow
to synthesized HDL design, but do not consider size or power.

In this paper, we describe a methodology for the optimisation of dataflow networks,
according to patterns often found in computer vision systems. This methodology and
associated techniques will be of use for computer vision algorithm designers who must
optimise their implementations to meet some metric budget; particularly relevant in re-
mote or mobile applications, where size and power are first class concerns. We demon-
strate and evaluate our refinements using a popular complex dynamic computer vision
algorithm, mean shift object tracking [3], targeting FPGAs, which are becoming in-
creasingly ubiquitous deployment platforms for remote/mobile computer vision. To the
best of our knowledge, such an approach towards area-energy aware domain specific
dataflow optimisation is first of its kind.

2 Background

Vision systems are increasingly being deployed in power constrained scenarios, such as
automotive, robotics or remote sensing. Whilst deployment on CPU/GPU combinations
has been the norm in the past few years, the constrained power budget has motivated the
adoption of FPGAs as standard deployment platforms [9]. Softcore solutions for image
processing have emerged and the research zeitgeist is the development of novel low-
power techniques [18]. In this paper, we target power and size constraints in dataflow
based design flows of image processing/computer vision systems.

2.1 Dataflow

A dataflow graph models a program as a directed graph. The model is depicted in Fig. 1.
Tokens move between asychronously communicating stateful and well defined func-
tional blocks called actors. They transform input streams into output streams via ports,
connected with wires. Inside an actor is a series of fireable sequences of instructions.
These instructions are encapsulated within actions, and the steps an actor takes deter-
mines which ports tokens are consumed and emitted and also which state-modifying
instructions are executed. The conceptual dataflow model of explicit data streaming
and functional units maps well onto FPGA design comprising explicit wires and basic
building blocks [17].



3

action

state

actors computations

FSM
ports

FIFOs

Fig. 1. The Dataflow Process Model

Our dataflow transformations are implemented into Orcc [19] that compiles CAL,
a Dataflow Process Network (DPN) [8] language implementation with dynamic prop-
erties: e.g., guards can be attached to an action to predicate its firing not only on the
availability of a token on a given port, but also on its value; explicit finite state ma-
chine (FSM) transitions between actions, an implicit predication on firing actions as
only actions reachable within one transition in the FSM declaration are fireable; prior-
ity statements declare an inequality between two actions.

2.2 Power on FPGAs

Power consumption on FPGAs consists of a) static power, which is directly propor-
tional to the amount of used logic, technology & transistor types; and b) dynamic power,
which is a weighted sum of several components (these include clock signal propagation
power, proportional to clock frequency; signals power, proportional to signal switch-
ing rates, among others). Power consumption minimization techniques can be broadly
classified in: 1) computation independent and 2) computation dependent. Computation
independent techniques neither alter the behavior nor the results of a system which in-
clude clock/power/input gating of unused sub-systems [10], dynamic frequency scaling
according to load [4] and different implementation strategies (e.g., BRAMs or LUTs)
of the given algorithmic.

Computation dependent techniques modify the behavior and/or the results of a sys-
tem, minimizing power consumption at the expense of performance or accuracy. These
include 1) stored data bit width: by minimizing the number of bits stored, both static
and dynamic power can be reduced as a consequence of smaller required data struc-
tures (BRAMs or LUTs). For example, it is possible to discard several least significant
bits in image pixels either evenly across color channels; 2) computation bit width: by
minimizing bit widths of signals used for computations, smaller datapaths (eliminat-
ing least significant bits) or range (eliminating most significant bits using saturated
arithmetic) can be realized; 3) arithmetic approximations: performing calculations on
integers rather than floating point numbers consumes less power. Numerical approxima-
tions, e.g., square root, trigonometric functions, can be quantized to require less logic;
4) iterations: upper limits on algorithm convergence criteria directly impact the number
of computations perform (also relates to numerical approximations); and 5) data access



4

ordering: when using external memory, high spatial locality greatly contributes to re-
ducing power consumption. All of these optimizations are realizable at the expense of
an acceptable reduction in algorithmic accuracy.

3 Area-Energy Aware Implementation Refinements

Our methodology consists of a profiling-refactoring loop, where profiling identifies
optimization opportunities and refactoring applies code transformations to optimize
the design. Profiling is performed in an orderly fashion considering three major do-
main specific power-area optimization criteria, observed in computer vision algorithms:
a) streamlined memory usage, b) back-propagation of bit width requirements and c)
dataflow actor fusion. Profiling is done through simulations, aided by automated tools,
and focuses on identifying optimizations which are not discovered automatically by a
general purpose non-domain specific optimizing compiler due to nuances in dataflow
semantics. To show the effectiveness of our method, we present a case study (imple-
mented in Orcc-CAL dataflow language) of a popular mean shift visual tracking al-
gorithm. However, the proposed methods are portable across other vision algorithms.
Because we target FPGA implementations, we focus our analysis on area and power
optimizations, rather than performance which has been already addressed in details by
related work [15].

3.1 Streamlined Memory Usage

Dataflow actors are independent computational units and every actor’s internal mem-
ory requirements are eventually mapped to FPGA logic (i.e., LUTs or BRAMs) and
consume precious space and power. Hence, it is essential to minimize memory require-
ments without jeopardizing the algorithm. Our analysis of open-source code reposito-
ries4 reveals several cases where actors can be refactored to minimize memory usage: a
recurring design pattern is the use of unnecessary local arrays. Consider the following
code example, which calculates the mean value of an array of pixels:

Listing 1.1. Unnecessary array for pixel mean calculation

i n t b u f f e r [ 1 0 0 ] ;
i n t c o u n t := 0 ;
g e t V a l u e s : a c t i o n St ream : [ v a l u e ] ==>
do

b u f f e r [ c o u n t ] := v a l u e ;
c o u n t := c o u n t + 1 ;

end
f i l t e r : a c t i o n ==> mean : [ v a l ]
v a r i n t v a l
do

v a l := b u f f e r [ 0 ] + b u f f e r [ 1 ] + . . .
v a l := v a l / 1 0 0 ;

end

4 https://github.com/orcc/orc-apps



5

Fig. 2. Actor composition (frame storage and histogram) with bit width usage highlighted.

This is a typical design pattern, where required values are read from input sources,
stored in local arrays, then processed (action scheduling logic is not depicted). Now
consider the following refactored code:

Listing 1.2. Pixel mean calculation with streamlined memory usage

f i l t e r : a c t i o n St ream : [ v a l u e s ] r e p e a t 100
==> mean : [ ( v a l [ 0 ] + v a l [ 1 ] = . . . ) / 1 0 0 ]

do
end

In this version, the number of required input data and the output data dependen-
cies are explicit in the action declaration, removing the need for local arrays. Data is
instead stored in the communication FIFOs used to link actors (i.e., input stream). This
optimisation is not automatically applied by optimising compilers because in the first
version, the same data is used for read and write in two different actions. Automatic
refactoring cannot be safely applied, unless the compiler is capable of dertemining that:
(1) action firing order is temporaly consistent; (2) no other actions use this data; (3) the
output calculation can be re-written in a (syntactically/semantically valid) single line.
Precisely ensuring these conditions is still beyond compilers’ static analysis capabili-
ties, for languages with such varied semantics such as CAL.

3.2 Back-propagation of Bit Width Requirements

A pervasive pattern in several image processing operations is quantisation, where values
(typically pixel color/luminosity components or processed data such as histograms) are
scaled down for normalization or other purposes. When values are quantized, lower res-
olution components (i.e., least significant bits) are not used for subsequent operations.
Optimising compilers can reduce data dimensionality locally, i.e., within a function or
an actor, but are not capable of extrapolating these optimisations to broaden the range
of optimised areas. This is especially prevalent in the dataflow paradigm, where quan-
tization is performed in one actor, whilst the optimization opportunities are present in
another; because communication between actors is performed through FIFO channels
which establish data size, the compiler fails to infer the optimization. Figure 2 presents
a depiction of this pattern, where the second actor (histogram) performs the following
computation to determine the histogram bin:



6

Fig. 3. Actor composition after bit width requirements back-propagation.

Listing 1.3. Histogram computation

/ / u i n t ( s i z e =8)
p r o c e d u r e f i n d B i n ( u i n t R , u i n t G, u i n t B)
v a r i n t r , i n t g , i n t b
b e g i n

r := R >> 4 ;
g := G >> 4 ;
b := B >> 4 ;
b i n V a l u e := r + ( g << 4) + ( b << 8 ) ;

end

In our approach, we identify code sections where unnecessary resolution is used,
and we trace the flow of data across the network to determine where to reduce bit
widths. In the previous histogram bin finding function, the lowest 4 bits of each datum
are not required for computation and can be removed. Back propagating new width
requirements, the network can be refactored into the one depicted in Fig. 3.

Again this optimisation is not automatically applied by optimising compilers be-
cause data dependencies are not calculated outside actors’ boundaries. Safely applying
this optimisation would require a compiler to statically determine that: (1) data sources
are not used in any other calculation; (2) the communication channel is not used for any
other data, and; (3) the shifting operation could safely be applied before data storage.

3.3 Actor Fusion

Another pervasive pattern in image processing, especially when composing systems us-
ing third-party code components, is that separation of concerns (i.e., dedicating actors to
specific tasks) leads to over-optimizations. Consider the example depicted in Fig. 4(a),
where pipeline consists of an actor performing a smoothing filter operation followed
by an actor performing binary thresholding. This sequential composition of operations
results in a processing pipeline which is not necessarily balanced in function of data
throughput. Consider the smoothing filter requires S time units for operation and the
binary threshold requires T time units for operation. If latency between sequential data
arrival is greater than S+T time units, temporal parallelism offered by the pipeline does
not offer any performance improvement. Instead, both actors can be fused in one that
takes S + T time units to compute, decreasing space and power costs (refer Fig. 4(b)).

This optimisation is not automatically applied by optimising compilers because it
requires some sort of profiling to determine execution times and throughputs, which
cannot be performed automatically at compile time. Furthermore, even after profiling,



7

(a) (b)

Fig. 4. (a) Over-optimised pipeline resulting in area/energy costs. (b) Optimised pipeline after
actor fusion.

Fig. 5. Example of single target mean shift visual tracking.

a compiler would have to be able to ensure that: (1) profiled execution times would
remain constant for any data input, and; (2) merging the two actors would not break
the intended behaviour. If any of the two actors possessed additional ports, automatic
optimisation would be further complicated, as the compiler would have to ensure that
other functionalities remained unaffected by actor fusion.

4 Case Study: Mean Shift Visual Tracking

We use a popular Mean shift tracking algorithm [3] as a use case for applying our
methodologies. Mean shift tracking is an object tracking algorithm; given an object’s
initial position is the first frame, it tracks the object’s position in subsequent frames.
We use a benchmark data sets (http://www.cvg.reading.ac.uk/PETS2009/a.html) in our
experiments, and have implemented the complete algorithm on a Xilinx Zedboard, con-
nected to an external camera.

Mean shift [3] is a feature-space analysis technique for locating the maxima of a
density function. An example of applying mean shift to image processing for visual
tracking is shown in Fig. 5. The target is successfully tracked from the initial frame on
the left, to the final frame on the right. The algorithm is a kernel based method nor-
mally applied using a symmetric Epanechnikov kernel within a pre-defined elliptical or
rectangular window. The target region of an initial image is modelled with a probabil-
ity density function (a colour histogram) and identifies a candidate position in the next
image by finding the minimum distance between models using an iterative procedure.
A summary is given in Algorithm 1.

Mean shift tracking exhibits several of the properties of computer vision that hin-
der automatic optimisations. It is a dynamic algorithm, i.e., only worst case estima-
tions of the time require for execution per frame can be performed, due to iterative



8

Algorithm 1: Summary of Mean-shift visual tracking
Input: Target position y0 on 1st frame;

1 Compute Epanechnikov kernel;
2 Calculate target color model qu(y0) (e.g., using RGB color histogram);
3 repeat

Input: Receive next frame;
4 Calculate target candidate color model: pu(y0);
5 Compute similarity function ρ(y) between qu(y0) & pu(y0);
6 repeat
7 Derive the weights ωi for each pixel in target candidate window;
8 Compute new target displacement y1;
9 Compute new candidate colour model qu(y1);

10 Evaluate similarity function ρ(y) between qu(y0) & pu(y1);
11 while ρ(y1) < ρ(y0) do
12 Do y1 ← 0.5(y0 + y1);
13 Evaluate ρ(y) between qu(y0) & pu(y1);
14 end
15 until |y1 − y0| < ε (near zero displacement);

Output: y1 (Target position for current frame);
16 Set y0 ← y1 for next frame;
17 until end of sequence;

loops with non-trivial termination conditions. It consists of several different compo-
nents, each with very different levels of complexity. It is implemented as a network
with feedback loops for recursion. Figure 6 depicts the full algorithm, implemented in
CAL (https://goo.gl/TKpN7e).

Our implementation targets low-power FPGA implementations, and has been pro-
totyped on a Xilinx Zedboard (https://goo.gl/tsqg1a). Only integer calculations are per-
formed, and our prototype uses 320x240 frames supplied by an external camera. Soft-
ware on the attached processor, which is used to feed the video from the FPGA to a
remote computer over Ethernet, supplies the initial position (i.e., which object to track)
to the mean shift implementation.

4.1 Meanshift transformations

Our initial implementation of Meanshift did not consider any premature optimisations;
rather, we attempted to be as faithful to the algorithmic description in Algorithm 1
as possible, following the dataflow paradigm; i.e., each aspect of computations is per-
formed by parallel actors. The CAL bin actor depicted in Fig. 6 is the largest (both in
code length and in FPGA resource usage) for two reasons: apart from computations, it
also stores the current frame (hence, has the biggest memory requirements in the net-
work) and is responsible for managing network state (e.g., is it processing the first or
subsequent frames).

We inspected compilation logs (both for CPU and FPGA backends) to ensure that
no optimisations could be applied by the dataflow compiler. Subsequently, we applied



9

Fig. 6. Meanshift Tracking CAL dataflow process network (final optimised version).

our optimisation methodology and iteratively refined the implementation. At each it-
eration, we measured power consumption and performance (details are described in
Section 5). We do not show detailed code/block diagram examples from Mean shift in
this section, as the examples depicted in Section 3 are either identical or sufficiently
similar to provide the reader with the necessary understanding.

The first optimisation was the actor fusion transformation (Section 3.3). We ob-
served that the actor responsible for storing the Epanechnikov kernel and providing the
results to CAL mModel actor, K Array (no longer depicted in the final version in Fig. 6)
performed with the same speed and latency as the following actor (CAL mModel), at a
processing speed superior to the rate of data availability. Hence, we clearly identified
an over-optimised pipeline which could be fused to reduce size and power.

The second optimisation applied was the transformation described in Section 3.1:
streamlined memory usage. We observed that one of the computations in the update weight
actor read data from input sources, stored them in local arrays, then processed outputs.
After refinement, the number of required input data and the output data dependencies
became explicit in the action declaration (i.e., performing a ”pure” computation), re-
moving the need for local arrays.

The final optimisation applied was the transformation described in Section 3.2:
back-propagation of bit width requirements, and the one with the most substantial pow-
er/size gains. In the original un-optimised version, the CAL bin actor stored the com-
plete current frame; 3 times 320x240 8 bit values (one per RGB colour channel). These
values were passed to a histogram actor which binned them according to value, per-
forming the “Calculate target candidate color model: pu(y0)” step in the algorithm.
After the transformation, previously depicted in Fig. 3, current frame storage required
only 4 bits per value. Actors were subsequently fused.

5 Experimental Results and Discussions
At each iteration in our optimisation methodology, we characterized performance at
both actor and network level using RTL simulation in Xilinx Vivado Design suite. We



10

Table 1. Micro benchmarks results

Power (W) Usage

Refinement Original Refined Original Refined

Streamlined memory usage 0.008 0.006 783/2012 (FF/LUTs) 648/1593 (FF/LUTs)

Bit width back-propagation 0.125 0.096 84 BRAMs 62 BRAMs

Actor fusion 0.017 0.016 190/690 (FF/LUTs) 170/511 (FF/LUTs)

Table 2. Meanshift Power consumption. All reported numbers are in Watt.

Total Static Dynamic Clocks Signals Logic BRAMS DSP I/O

V1 0.461 0.129 0.331 0.112 0.028 0.015 0.172 0.001 0.002

V2 0.356 0.128 0.228 0.070 0.022 0.011 0.123 0.000 0.002

V3 0.321 0.127 0.194 0.070 0.020 0.011 0.091 0.000 0.002

also calculated power consumption, at actor granularity, using Xilinx Power Analyzer
embedded in the Vivado suite, reporting high confidence level. Simulation results were
verified through physical implementation on a Xilinx Zedboard. Table 1 depicts ap-
proximate power and resource usage results for the examples described in Section 3.
Because the impact of optimisations is highly dependent on their coverage, i.e., what
percentage of an actor is affected by the transformation, it is hard to accurately quan-
tify transformation impact without applying them to a large collection of benchmark
programs, which is not feasible without automating refactoring. However, the results in
Table 1 should suffice as proof of concept of the proposed transformations’ impact.

To provide context to transformation results, Table 2 depicts power consumption for
Mean shift versions after successive refinements applications and Table 3 depicts FPGA
resource usage. In both tables V1, V2, V3 signifies (V1) original un-optimised version
(baseline), (V2) after actor fusion and streamlined memory usage & (V3) after actor
fusion, streamlined memory usage and back-propagation of bit width requirements, re-
spectively. Peak performance (maximum clock frequency and achievable frames per
second) were unaltered by transformations, at 81MHz and 145fps, respectively. These
results provide designers with a quantitative view of how the aforementioned transfor-
mations can contribute to decrease resource usage and power consumption.

Our results show that several optimisations which affect power consumption and re-
source usage can be applied, without compromising functionality or performance: this
is certainly desirable for the design of power/size constrained vision systems. How-
ever, these cannot be automatically applied by optimising compilers. Two main insights
are gained from our experiments: firstly, concerned designers must be aware of man-
ual or semi-automated refactoring methodologies, beyond what is freely given by the
compiler. Secondly, compiler optimisation technology, despite great advances in recent
years, must still benefit from improvements.

Domain-specific refactoring can be applied by simulation-refinement loops, where
performance estimation can expose over-optimised sub-systems, consuming unneces-
sary power and resources (e.g., actor fusion example). Manual code inspection can re-



11

Table 3. Meanshift FPGA usage on Xilinx Zedboard (Zynq 7020).

Registers LUTs BRAM DSP

V1 3792 (3.00%) 9603 (18.00%) 111 (79.00%) 22 (10.00%)

V2 2189 (2.00%) 4679 (8.00%) 124 (88.00%) 8 (3.60%)

V3 2490 (2.34%) 4066 (7.64%) 67 (48.00%) 8 (3.60%)

veal refactoring opportunities which minimize resource usage, either through local code
optimisation (e.g., streamlined memory usage example) or through cross sub-system
code optimisation (e.g., back propagation example). Both of these can be aided by auto-
mated profilers (e.g., the CAL-Orcc framework supplies Turnus [1]) and by static code
analysers. The methodologies and transformations we have presented should act as a
guide for image processing engineers to perform such optimisations on their systems.

Optimisation passes in contemporary compilers are limited by language semantics.
Static dataflow (i.e., without loops, stateless) is far simpler to analyse and subsequently
optimise than dynamic dataflow (e.g., CAL). However, most real-world code relies
heavily on dynamic features and is typically composed from third-party sub-systems.
Hence, it is necessary to extend optimisation passes with more sophisticated static anal-
ysis capabilities that can infer memory waste and cross sub-system optimisations. The
methodologies and transformations we have presented should aid compiler designers in
identifying optimisation bottlenecks and possible solutions.

On Mean shift tracking, a complex algorithm exhibiting several design properties
which inhibit automated compiler optimisations, our transformations resulted in 31%
power consumption reduction, from 0.461 to 0.321W, and a reduction of 10.36, 31 and
6.4 percentage points in LUTs, BRAMs and DSPs resources usage, respectively.

6 Conclusions
We have described a methodology for the optimisation of dataflow networks, accord-
ing to patterns often found in computer vision systems. The proposed methodology
will be of use for computer vision algorithm designers who must optimise their imple-
mentations to meet some metric budget and for compiler designers in identifying op-
timisation bottlenecks and possible solutions. Our refactoring methodology, applying
transformations to a complex algorithm, resulted in 31% power consumption reduction
and a reduction of 10.36%, 31% & 6.4% in LUTs, BRAMs and DSPs resources usage,
respectively. We also identified which design/language features were responsible for
hindering automated optimisation. Our current work focuses on developing new static
analysis technologies and refactoring tools; in future work, we hope to integrate these
static refactoring tools into the Orcc framework and extend the optimisation method-
ologies so they are applicable to other compilers and language paradigms.

Acknowledgement: We acknowledge the support of the Engineering and Physical Re-
search Council, grant references EP/K009931/1 (Programmable embedded platforms
for remote and compute intensive image processing applications), EP/K014277/1 (MOD
University Defence Research Collaboration in Signal Processing).



12

References

1. Brunei, S.C., Mattavelli, M., Janneck, J.W.: Turnus: a design exploration framework for
dataflow system design. In: Int’l Symp. on Circuits & Systems (ISCAS). pp. 654–654 (2013)

2. Brunet, S.C., Mattavelli, M., Janneck, J.W.: Buffer optimization based on critical path anal-
ysis of a dataflow program design. In: Int’l Symp. on Circuits and Systems (ISCAS). pp.
1384–1387 (2013)

3. Comaniciu, D., Ramesh, V., Meer, P.: Kernel-based object tracking. IEEE Trans. on Pattern
Analysis and Machine Intelligence 25(5), 564–577 (2003)

4. Ge, R., Vogt, R., Majumder, J., Alam, A., Burtscher, M., Zong, Z.: Effects of dynamic voltage
and frequency scaling on a k20 GPU. In: Int’l Conf. on Parallel Processing. pp. 826–833
(2013)

5. Hueske, F., Peters, M., Krettek, A., Ringwald, M., Tzoumas, K., Markl, V., Freytag, J.C.:
Peeking into the optimization of data flow programs with MapReduce-style UDFs. In: Int’l
Conf. on Data Engineering (ICDE). pp. 1292–1295 (2013)

6. Janneck, J.W., Miller, I.D., Parlour, D.B., Roquier, G., Wipliez, M., Raulet, M.: Synthesizing
hardware from dataflow programs: An MPEG-4 simple profile decoder case study. In: IEEE
Workshop on Signal Processing Systems (SiPS). pp. 287–292 (2008)

7. Kim, Y., Jadhav, S., Gloster, C.S.: Dataflow to Hardware Synthesis Framework on FPGAs.
In: Int’l Symp. on Computer Architecture and High Performance Computing Workshops
(SBAC-PADW). pp. 91–96 (2016)

8. Lee, E.A., Parks, T.M.: Dataflow process networks. Proc. of the IEEE 83(5), 773–801 (1995)
9. Malik, M., Farahmand, F., Otto, P., Akhlaghi, N., Mohsenin, T., Sikdar, S., Homayoun, H.:

Architecture exploration for energy-efficient embedded vision applications: From general
purpose processor to domain specific accelerator. In: IEEE Computer Society Annual Sym-
posium on VLSI (ISVLSI). pp. 559–564 (2016)

10. Pandey, B., Yadav, J., Pattanaik, M., Rajoria, N.: Clock gating based energy efficient ALU
design and implementation on fpga. In: Int’l Conf. on Energy Efficient Technologies for
Sustainability (ICEETS). pp. 93–97 (2013)

11. Rheinländer, A., Leser, U., Graefe, G.: Optimization of complex dataflows with user-defined
functions. ACM Computing Surveys 50(3), 38:1–38:39 (May 2017)

12. Schulte, E., Dorn, J., Harding, S., Forrest, S., Weimer, W.: Post-compiler software optimiza-
tion for reducing energy. SIGARCH Comput. Archit. News 42(1), 639–652 (Feb 2014)

13. Seinstra, F.J., Koelma, D.: The lazy programmer’s approach to building a parallel image
processing library. In: Proc. Int’l Parallel and Distributed Processing Symposium (IPDPS).
pp. 1169–1176 (2001)

14. Sérot, J., Berry, F., Bourrasset, C.: High-level dataflow programming for real-time image
processing on smart cameras. Journal of Real-Time Image Processing 12(4), 635–647 (2016)

15. Stewart, R., Bhowmik, D., Wallace, A., Michaelson, G.: Profile guided dataflow transforma-
tion for FPGAs and CPUs. Journal of Signal Processing Systems 87(1), 3–20 (2017)

16. Stewart, R., Michaelson, G., Bhowmik, D., Garcia, P., Wallace, A.: A dataflow IR for mem-
ory efficient RIPL compilation to FPGAs. In: Int’l Conf. on Algorithms and Architectures
for Parallel Processing. pp. 174–188 (2016)

17. Teifel, J., Manohar, R.: An asynchronous dataflow FPGA architecture. IEEE Trans. on Com-
puters 53(11), 1376–1392 (2004)

18. Turcza, P., Duplaga, M.: Hardware-efficient low-power image processing system for wireless
capsule endoscopy. IEEE J Biomedical and Health informatics 17(6), 1046–1056 (2013)

19. Yviquel, H., Lorence, A., Jerbi, K., Cocherel, G., Sanchez, A., Raulet, M.: Orcc: Multimedia
development made easy. In: Proc. ACM int’l conf. on Multimedia. pp. 863–866 (2013)

View publication statsView publication stats


