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Structure of Talk 

• Motivation
• Distributed data fusion
• Suboptimal distributed data fusion
• Distributed multi-object tracking with PHD filters



Distributed Fusion Architecture 



Motivation 

• Nodes fuse data from
– Local observations
– Local filter predictions
– Communicated information

• A dynamic network of
sensing nodes
– No central processor
– No central communications
– No local knowledge of global 

network topology
• Scalable, survivable and

modular



Distributed data fusion 

• Motivation
• Distributed data fusion
• Suboptimal distributed data fusion
• Distributed multi-object tracking with PHD filters



Single Platform Case 

Node A 



Multiple Independent Platform Case 

Node A 

Node B 



Multiple Distributed Platform Case 

Node B 

Node A 



Kalman Filter Formulation 

• Each platform maintains its own estimate of the
target state,

• Each node runs a Kalman filter locally and fuses
locally taken measurements

• The update is distributed to other nodes which
fuse with it



Properties of “Ideal DDF” 

• The estimate in the network should (eventually) be
the same everywhere

• The estimate should be the same as a “super
node” which fuses all of the observations centrally



Simple Strategy 

• Why don’t we treat the fused estimates from one
node to be observations which we can feed
directly into the other node?
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Probabilistic / Information Set Representation 



Conditionally Independent Case 



Common Information 

• The state information stored in each node is not
independent of the information in other nodes
– Common process noise

• Occurs whether or not nodes have exchanged information

– Common measurement history
• Occurs when nodes exchange information

• The effect can be illustrated by considering fusion
of data from two different nodes



Fusion of Dependent Information Sets 

Common 
information 

New 
information 

New 
information 



Assuming Conditional Independence 

Double counted term 



Inconsistency in Kalman Filters 
• Consider the state of the entire DDF network
• The state vector is

• The network estimate is



Failure Due to Inconsistent Approximation 
• However, assuming the estimates are independent is

equivalent to using the approximate network estimate

• The error in this approximation is



Overcoming Double Counting 
• Recall that the problematic term is

• Chong and Mori showed that right expression
“cancels out” the common information

• The common information can only be computed
with special network topologies

Cancel out common information 



Approach 1: Distribute Observations 

• Broadcast all observations to all nodes



Pros and Cons 
• Advantages:

– Each node has optimal estimate for all time
– Distribution provides no additional complexity to fusion algorithm
– Actually used in practice

• Disadvantages:
– Requires all nodes to have the same communication and

computational abilities
– Requires extremely large bandwidth
– Introduces implicit assumption that all nodes have exactly the

same estimate (=all the links have to work all of the time)



Approach 2: Fully-Connected Network 

• Broadcast all updated state estimates to all nodes



Fully-Connected Networks 

• The easiest way to implement a fully connected
network is to use the inverse covariance (or
information) form of the Kalman Filter

• The state space is replaced by the information
variables



Updating in Information Form 

• Using information form, the update simplifies to

 where the information from the observations is 



Distributed Information Updates 

• Since the information from the observations is
independent of the state, in and In are independent 
of previous state estimates and can be safely 
distributed 

• The update rule simply becomes



Fully-Connected Network 
• Advantages:

– Each node has optimal estimate for all time
– Broadcasting the observation information variables

potentially saves bandwidth
• Disadvantages:

– Requires all nodes to have the same communication
and computational abilities

– Still requires O(N2) communication links
– Introduces explicit assumption that all nodes have

exactly the same estimate (important if linearising e.g.,
with an EKF)



Approach 3: Hierarchical Network 

• Network has “master” and “slave” nodes
– Slaves fuse data locally
– Estimates sent to master which fuses them together
– Revised estimate broadcast back to slaves



Fusion in the Slave 

• The slave updates using the information Kalman
filter equations:



Fusion in the Master 

• The master updates by summing the information
from all the slaves

• To compensate for the prediction which was sent
out, the master must subtract out common
information,



Hierarchical Network 

• Advantages:
– Each node has optimal estimate for all time
– The number of communication links is O(N)

• Disadvantages:
– Additional latency
– One node is privileged; failure of that node causes the

whole network to fail



Approach 4: Channel Filters 

• Constrain the network to be a tree
– Single path between any pair of nodes

• Use “channel filters” to subtract off common information



Estimating Common Information 

• Consider a link between a pair of
nodes i and j

• The channel filter maintains
common information across the
link

• It has its own information
estimate,



Updating Local Nodes 

• The Channel Filter is a regular Kalman Filter but
works with the information exchanged between i
and j rather than the observation data directly

• First, let the update at filter i using the local sensor
observations be written as



Fusing With Nearby Nodes 

• The updated estimate is given by summing all the
independent information from a node’s
neighbours,



Updating the Channel Filters 

• The channel filter update is given by recursively
updating with the difference in information
variables from the two nodes,
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Advantages and Disadvantages 

• Advantages:
– The number of communication links is O(N)
– Optimal in a “time-delayed” sense

• Disadvantages:
– Estimates at all nodes differ
– Single path of communication; no redundancy
– If the network is reconfigured, the channel filters have to

be recalculated from scratch



Review of Techniques So Far 

• It is possible to develop optimal algorithms for
distributed data fusion using local message
passing only

• However, these techniques rely on special
network topologies:
– Fully connected
– Tree-connected

• In general, preserving these topologies can be
difficult and undesirable



Adhoc Network 

• Arbitrary network with loops and cycles
• Complete flexibility and redundancy



Distributed Data Fusion in Adhoc Networks 

• It has been shown that no local data fusion
scheme can be used to develop consistent,
optimal estimates in this situation

• Therefore, it appears that DDF is strongly limited
to the case of very particular data fusion
architecture

• If we throw optimality out of the window, can we
develop tractable approximations instead?



Suboptimal distributed data fusion 

• Motivation
• Distributed data fusion
• Suboptimal distributed data fusion
• Distributed multi-object tracking with PHD filters



Covariances With Known Correlations 



Covariances With Known Correlations 



Covariance Intersection 



Parameteristing the Intersection Region 

• The update which generates a family of ellipses
which circumscribe the intersection region is given
by

• This is the same as a Kalman filter update, but
with
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Limitations of Covariance Intersection 

• CI generates estimate that does not under
estimate the mean squared error

• However, the algorithm only understands the first
two moments of the distribution

• It cannot exploit other important information (e.g.,
multimodal, discrete)

• For information of more complicated types, a
generalisation of CI is required



Structure of the Fusion Rule 

• Suppose we have a fusion rule should be of the form

 where 

Common information single-counted 

Function of new information 



Robust Fusion Rules 

• There are at least two classes of rules which
satisfy these requirements:
– Weighted means of probability distributions
– Weighted geometric means of probability distributions

• The weighted geometric mean produces better
results than the weight mean, and so we focus on
it for the rest of the talk



Weighted Geometric Mean (WGM) 
•  The update is computed from: 

•  Despite it’s apparently arbitrary nature, this form crops up 
in lots of places: 
–  Covariance intersection, if the distributions are Gaussian  
–  Worst case distributions to compute upper bounds in binary 

classifier problems (Chernoff Information) 
–  Logarithmic opinion pools to fuse opinions of experts and 

classifiers 
–  Alpha divergences to approximate message passing in belief 

networks 
–  Power priors for combining prior information from earlier studies 



WGM Does Not Double Count 

Single counted term 



Information Losses and Gains 

•  Therefore, we now need to ask what is the effect 
of 

•  We can assess this in several ways: 
–  By observation 
–  Pointwise bounds 
–  Information measures 

•  Surprisingly hard 



Example Distributions 



Effect of ω



Effect of ω



Effect of ω



Effect of ω



Effect of ω



Effect of ω 



Pointwise Bounds 

• It is possible to establish pointwise bounds which
apply at each point in the distribution

• Although pointwise bounds play no special role in
Bayesian statistics, they provide some insight into
the behaviour of the fusion rule



Bounds for the Unnormalised Distribution 

• Let

• This is always “squeezed” between the
distributions,



Illustration of the Unnormalised Bound 



Lower Bound 
• Consider the distribution

 where 

• The WGM obeys the lower bound



Illustration of the Lower Bound 



Interpreting the Lower Bound 
•  The minimum value of a distribution plays no 

special role in Bayesian statistics 
•  However, the bound from below 

–  Avoids degenerate cases 
•  The support has to contain the intersection of the supports of 

the prior distributions 

•  Lower bounds on distributions often play a role in 
practical filtering algorithms 
–  Truncate distributions or modes in MHT if the probability 

is “too small” 
 



Upper Inequality 

•  There can exist an x such that 

•  The fact that the distribution can exceed the 
maximum suggests that fusion can occur 
–  The distribution becomes “more concentrated” 

 
 



Illustration of the Upper Inequality 



Updated Distribution 



Distributed Target Tracking 
•  Distributed fusion system 

–  2 nodes 
–  Bearings only sensors 

•  GMMs used to quantify 
imprecise nature of sensors 
–  Bearing-only sensors initialise 

range-parameterised KFs 
•  Predictions and updates once 

per second 
•  Distribution between nodes 

once every four seconds 

Courtesy of S. Ong, B. Upcroft and T. Bailey, University of Sydney, Australia 



Particle-Based Density Division 
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Estimation Results (Entropy) 
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KL Divergence from Centralised Solution 
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Example 
•  Distributed fusion system 

–  5 nodes 
–  Mix of range and bearing only 

sensors 
•  GMMs used to quantify imprecise 

nature of sensors 
–  Bearing-only sensors initialise range-

parameterised KFs 
–  Range-only sensors initialise angle-

parameterised KFs 
•  Only 70% of communications 

make it 

Target 

Platforms 

Platform 



Angle and Range Parameterised KFs 



Assumed Independent 

Scenario overview – blue lines are sensor readings, 
red green and blue ellipses are the MHT estimates for 

each platform 

Zoomed in portion of 
scenario, centered on the 

target location 

Contours of the pdf, also 
centered on the target 

location 



Pairwise Component Covariance Intersection 



Pseudo-WGM (Crude First Order Approx) 



Mean Squared Error in Estimates 



Mean Squared Error vs. Covariance for PCCI 



Mean Squared Error vs. Covariance for GMM  



Distributed multi-object tracking 

•  Motivation 
•  Distributed data fusion 
•  Suboptimal distributed data fusion 
•  Distributed multi-object tracking with PHD filters 



Track-Based Approaches 

Target 1 Target 3 Target 2 

Node A 
Node B 

Target 4 

Data Association 



Track-Based Approaches 

Target 1 Target 3 Target 2 

Node A 
Node B 

Target 4 

Track-to-Track Association 



Probabilistic Hypothesis Density Filters 

• The idea behind the PHD is to propagate the
intensity function D(x)

• The intensity function specifies the expected
number of targets in a given region, R

E (|X ∈ R|) =
∫

R
D(x)dx



Density of Targets 
Observation space

Target
 motion

Target state-space

PHD

Predict+UpdatePredict+Update Predict+Update



Probabilistic Hypothesis Density Filters 

•  The idea behind the PHD is to propagate the 
intensity function D(x) 

•  The intensity function specifies the average 
number of targets in a given region, R 

 
•  The complexity of this representation scales with 

the fidelity of how X is represented, not the 
number of targets 

E (|X ∈ R|) =
∫

R
D(x)dx



Structure of the PHD 
• For an iid cluster process, it can be shown that the

PHD reduces to

• Therefore we need only propagate s(x) and p(n)
• This can be done in polynomial time

Cardinality 
distribution 

Localisation 
distribution 



Distributed Multi-target Tracking Redux 

Target 1 Target 3 Target 2 

Node A 
Node B 

Target 4 

Data Association 

Track-to-Track Association 
PHD Fusion Rule? 



Applying EMD to PHD Filters 

•  Suppose we wish to fuse two nodes A and B 
•  Each node has its own PHD expressed by its own 

localisation and cardinality distributions, 



Applying EMD to PHD Filters 

• By working through all the maths, it can be shown
that EMD fusion creates a fused PHD of the form

 where 

s�(x)�
�
sA(x)

�� �
sB(x)

�1��

p�(n)�
�
pA(n)

�� �
pB(n)

�1��
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sA(x)
�� �

sB(x)
�1��

dx
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Example Fusion of Two PHDs 



Properties of the Fusion Equations 

•  The cardinality distribution almost looks like an 
EMD fusion rule 

p�(n)�
�
pA(n)

�� �
pB(n)

�1��
�� �

sA(x)
�� �

sB(x)
�1��

dx

�n

EMD-Like Geometric Scaling 



Cardinality Scaling Factor 

•  It is well-known that the weighted geometric mean 
is convex 

•  Therefore, 

•  Since each localisation distribution is normalised,  

[sA(x)]�[sB(x)]1�� � �sA(x) + (1 � �)sB(x)

� �
sA(x)

�� �
sB(x)

�1��
dx � �

�
sA(x)dx + (1 � �)

�
sB(x)dx

� 1



Cardinality Scaling Factor 

• Because the scale factor is less than 1, the higher
cardinality terms tend to receive a lower weight

• This becomes more marked the smaller the  value
of

• This integral actually provides some kind of
measure of the similarity between the localisation
distributions

∫ [
sA(x)

]ω [
sB(x)

]1−ω
dx



Cardinality Scaling Factor 

s1(x)

s2(x)



Cardinality Scaling Factor 

s1(x)

s2(x)



Cardinality Scaling Factor 

s1(x)

s2(x)



Cardinality Scaling Factor 



Property of the Scaling Factor 

•  The integral is 1 when the distributions are the 
same 

•  Its value declines as the distributions become 
“less similar” 

•  A cause of dissimilarity is clutter 
•  Clutter tends to create spurious peaks in the PHD 
•  The clutter should be independent in each node 

over time 
•  Therefore this behavior is “kind of” reasonable 



Simulation Scenario 



Simulation Scenario 



OSPA Results for Sensor 1 
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OSPA Results for Sensor 4 
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Tracking Small Ships 

•  To test the system in practice, we collaborated 
with Heriot-Watt and BAE Systems on a CDE-
funded project 

•  The goal was to look at tracking small boats using 
multiple sensors 
–  Cluttered, messy environment 
–  Distributed fusion systems 



The Location 



The Targets 



The Van 
Node A: RADAR 

Node B: Cameras 



Average Intensity Values 



Raw Detections 



Example Data 

Radar Data Camera Data 
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Ground Truth, RADAR, EO and Fused Results 
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OSPA Results 
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Summary and Conclusions 

•  Distributed data fusion makes it possible to scatter 
information processing throughout a network in an 
adaptive manner 

•  However, book keeping dependencies properly is 
extremely challenging 


