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Abstract. This paper proposes a method to automatically detect and localise the dominant speaker in a conversation by

using audio and video information. The idea is that gesturing means speaking, so we look for people hands or heads move-

ments to infer a person is talking. In a normal conversational context with two or more people, we learn Mel-frequency

cepstral coefficients (MFCC) and find how they correlate with the optical flow associated with moving pixel regions by

canonical correlation analysis (CCA). In complex scenarios, this operation could be resulting in associating pixel regions

to sounds which actually are not really correlated. Therefore, we also triangulate the information coming from the micro-

phones to estimate the position of the actual audio source, narrowing down the visual space of search, hence reducing the

probabilities of incurring in a wrong voice-to-pixel region association. We compare our work with a state-of-the-art exist-

ing algorithm and show on real data the improvement in dominant speaker localization.

1. Introduction

Tracking a speaker in an unconstrained environment has

become an increasingly studied problem over the last few

years only. In fact, speaker localisation and person tracking in

general, finds a number of applications such as video surveil-

lance, security, home automation, hospital care and so on.

Such applications mostly involve analysing large uncontrolled

areas where no constraints on people movements exist. In

such scenarios, speaker tracking by means of microphones is

subject to reverberation and background noise which dramati-

cally decrease standalone system performances. In addition to

clutter, obstructions and changing light conditions which on

the other hand affects video person tracking. Thus, designing

a multi-modal system which integrates and/or fuses audio and

video data may lead to a better speaker detection and localisa-

tion result.

State-of-the-art speaker tracking systems [1–4] which aim at

detecting the number of speakers in a room and localising

them over time, normally treat the two cues as they did not

relate to each other so that the data, different by nature, are

integrated/fused as if they were independent variables, as e.g.

in [5]). Conversely, little attention has been directed towards

the exploitation of audio and video signals underlie relation

to track the actual speaker. However, audio-video (AV) cor-

relation has been widely used to recognise AV event anoma-

lies [6, 7] in large unconstrained spaces whereas on the con-

trary AV signal correlation has been used for speaker detection

only in small controlled environments [8, 9]. In particular,

experiments have been carried out for scenes where people

speak next to microphones and cameras while some distract-

ing sources are playing in the background. This work proposes

to extend those techniques to track the dominant speaker in a

large uncontrolled scenario, where people are having a conver-

sation (e.g. cocktail party scenario). However it is important to

highlight that the aforementioned AV correlation techniques

are mostly proved to be effective [8,9] in very stable scenarios,

where sound sources are stationary and no distracting motion

no occlusions exist. On the contrary, large unconstrained sce-

narios such as surveillance ones, are normally low resolution

and large field of view, meaning the subjects of interest are

far apart from the sensors and normally described by a few

number of pixel within a frame. Furthermore, surveillance

scenes often focus on crowds fluxes or, to a smaller extent,

cocktail party scenarios, where more than 2 sources of motion

and speech are recorded and where people often occlude each

other. Thus, to effectively applying the said algorithms to such

complex scenarios, it is necessary to integrate or fuse a fur-

ther cue to decrease the roughness of the detections. To such

aim, we triangulate also the audio information gathered by

the microphones so as to localise the dominant audio source.

Hence, this paper contribution is twofold i.e: a) it extends the

use of AV correlation analysis to large uncontrolled environ-

ments i.e. for low resolution scenes and for non stationary

sound sources; b) it resolves the problem of extra video motion

correlated with the dominant audio signal for AV canonical

correlation analysis (CCA).

2. Algorithm Description

Assuming that observing gesturing in a video stream often

means locating speaking activity, we attempt to recognise and

exploit a somewhat inherent correlation between audio and

video signal as done similarly in [8]. In particular, they learn

speaker Mel-frequency cepstral coefficients (MFCC) and find

how MFCC correlate with the optical flow associated to mov-

ing visual objects by canonical correlation analysis (CCA).

Hence, they define a smoothed speaking likelihood in the video

segments, which sound is supposed to be the most correlated

with, to eventually infer the actual/dominant speaker is within

that pixel region. In their approach, they further improve on

this segmentation by manually selecting points in the image

which indicates AV foreground and background. In particular,
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they show this step improve results in complex scenarios where

distracting, occluding and correlated motion may appear. We

enhance this approach to make it fully automatic, by substitut-

ing the user by the audio localisation information i.e. the posi-

tion calculated by evaluating the time delays of arrival of the

audio signals at the microphones.

2.1 Video Features

The video features extraction procedure consists of several

steps. First, we compute the forward and backward dense opti-

cal flow of each image frame. Such information are combined

to calculate velocity and acceleration of two adjacent frames

motion. If U+(p, t) represents the optical flow (u,v) at pixel

position p = (i, j), at time t, calculated between frames Ft and

Ft+1 and analogously U−(p, t) the flow vector computed over

time between Ft and Ft−1, then the velocity and acceleration

vectors are defined as:

vel =U+(p, t), acl =U+(p, t)− (−U−(p, t)). (1)

Hence, the RGB colour, velocity and acceleration of each

pixel p in a frame is combined into a single feature vector

vi j = (p,col,vel,acl). Then a spatial segmentation, based on

the QuickShift algorithm, is performed in a per-frame fashion.

This first segmentation is followed by a second one which

is carried out across frames in order to further reduce the

data dimension. In particular we calculate a K-means spatio-

temporal segmentation so that, at the end of the processing,

every pixel in a frame can be ascribed to the spatio tempo-

ral centre of mass of the k-th segment found by K-means i.e.

final segments Sk(k = 1, ...,K) are identified by the normalised

velocity and acceleration of their centre of mass in addition to

their mean RGB colour : vi j = (μp,μcol ,μcol ,μcol). Segments

which in time corresponds to image patches with constant

motion are set to zero whereas the m1 top segments for veloc-

ities and the m2 top for acceleration are selected in order to

compose the final video feature vector. The feature vector v
for a video, is basically represented by an m× t matrix whose

columns correspond to frames.

2.2 Audio Features

Audio feature vectors are represented by the first
n
2

MFCC

coefficients [10] (audio signal velocity) and their
n
2

derivatives

(audio signal acceleration). The feature vector a for a video,

n× t matrix whose columns correspond to frames. Note that

this means the audio signal must be windowed and processed

accordingly to the video frame rate in order for the CCA to be

based on the same number of observations.

2.3 Audio Video Correlation

Audio and video feature vectors correlation is sought under

the hypotheses that there exist some kind of hidden correspon-

dence between the two signals i.e. motion velocity of the image

is related to the audio MFCC, whereas motion acceleration

is related to the MFCC derivatives (Δ -MFCC). To this aim

canonical correlation analysis (CCA) [11] is used. In fact, it

allows to not only find a common coordinate system where a
and v can be projected, but also to immediately know as a by

product the maximised correlation. This is very important in

order to be sure the video segment retrieved is associated with

the dominant audio source i.e. the one that maximise the cor-

relation between audio and video data. Specifically, the CCA

problem between two random variables has the closed form

solution: {
C1

vvCvaC1
aaCavwv = λ 2wv

C1
aaCavC1

vvCvawa = λ 2wa,

where C represents the correlation matrix and wv and wa the

canonical basis of v and a respectively. This means the largest

CCA eigenvector wv1 corresponding to the largest eigenvalue

λ 2
1 is the one which give the larger contribution to the maxi-

mum correlation between audio and video i.e. which maximise

the canonical variates,v
′
1 =wT

v1 v and a
′
1 =wT

a1 a. If it is assumed

that only a single dominant audio source exists, the first of

these eigenvectors wv1 is chosen and the frame segments that

it identifies S are said to be the one where the sound is orig-

inating. A binary confidence map is set for the selected seg-

ments and, finally, the confidence maps are convolved with a

2D spatial Gaussian kernel function and a 1D temporal Gaus-

sian mask, to smooth the results over the spatio-temporal vol-

umes associated with the segments. In practice only the nor-

malised elements of wv1 largest then a predefined threshold are

selected.

3. Correlation and Localisation data Fusion

Details of the triangulation, by mean of an extended Kalman

filter (EKF) can be found in [5, 12]. Briefly, we feed the time

difference of arrival (TDOA) computed for each microphones

pair to an EKF over time to iteratively calculate the dominant

speaker position xSL = (x,y) on the ground plane.

The integration between audio speaker localisation (SL) data

(i.e. speaker trajectory) and CCA result is intuitively done at

confidence map level. In other words, we project the audio

source trajectory xSL(t) onto the pixel domain. Thus, at every

time step we associate the trajectory points to the k-th seg-

mented region which they belong to i.e. (x,y)SL �→ (i, j)SL ∈ Sk.

Therefore, we set Sk as a further confidence map (other than the

ones already given by the first base eigenvector coefficients)

and define a smoothing Gaussian kernel as said above. Ulti-

mately, we treat this kernel as if it was another first base eigen-

vector coefficient adding up his contribution to the CCA result.

4. Experimentation

We now present comprehensive results on real data. No com-

parison is made for them since, as far as we are aware of, no

other works exist with same experiment setup. Neither the

authors of [8] used more microphones for localisation pur-

poses. We analyse a real indoor room where people can freely

move. In particular, audio and video data are gathered in a

typical open office room, whose size is 111.44 m2, where the
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Figure 1. In (a) the layout of the experiments setup is given. (b) shows the result of the baseline method [8] applied on the Basketball data provided for one of

the video frame. This output comes from the final (QuickShift) spatial segmentation shown in (c) which is obtained by overlapping the colour, motion velocity

and acceleration of the frame. In (d) the final (K-means) spatio-temporal segmentation is presented.

area considered of interest is 12 m2 (as seen in Figure 1a).

Also we make no attempt to reduce normal background noise

(desk fans, footsteps, talking etc.). A significant reverberation

time (T60 ≈ 0.5 s) is measured. Ground-truth data is hand

labelled considering feet position to 10 cm of accuracy on a

ground plane common to the cameras and the microphones.

Synchrony of data is obtained by processing audio and video

signals accordingly to the cameras frame rate ≈ 7.5 Hz. Only

4 pairs of directional microphones are used. The EKF filter is

initialised using a video detected position of their correspon-

dent targets and static matrices Q and R [12], whose values

is chosen on the basis of an optimisation step. Audio is sam-

pled at 44.1 KHz, and framed with 50 % overlap. 10 MFCC

coefficients are computed, as well as their first 10 derivatives

(Δ - MFCC). The QuickShift algorithm parameters used are

γ = 0.25,σ = 1 and τ = 15 i.e. the same as in [8]. The number

of clusters in the K-means algorithm is set to be 30. And the

smoothing gaussian kernel has a variance of σ = 5. For each

experiment, we analyse approximately 4 s of recorded audio.

Experiment ‘Cocktail Party’ (Figures 2, 3, 4, 5) shows several

people having a conversation in groups and some passer-by.

There is a dominant group in the foreground while another

group is in the background. This results in challenging speech

overlaps and occlusions. Speakers are at least 50 cm far from

the microphones. They stand still while some passer-by walks

in the background.

Experiment ‘Crossing’ (Figures 6, 7) shows two people who

look alike walking while having a conversation and other peo-

ple in the background. They meet along a diagonal where they

keep on walking past each other causing an occlusion in the

resulting image. Also two people external to the main scene

are in the room.

4.1 Dominant Speaker Detection Results

In the following we report a qualitative description of the pre-

liminary results we have obtained referring to their correspond-

ing figures. As said, the AV correlation method was imple-

mented on the base of [8]. Figure 1b shows the output of such

a method on the “Basketball” video sequence provided by the

authors. Figures 1c and 1d illustrate respectively the results

of the Quickshift spatial segmentation and the K-means spa-

tiotemporal segmentation for the analysed frame.

Experiment ‘Cocktail Party’ ground-truth consists of the

speaker on the left (First Speaker) talking for the first part of

the video (≈ 1 s) whereas the one with the check shirt (Sec-
ond Speaker) speaks for the remaining (≈ 3 s). The third per-

son (Listener) in the video foreground (blue jumper) is paying

attention to the conversation while producing some distracting

fine motion by slightly moving his body on a side. Other people

are having a conversation in the background. Figure 2a shows

frame 2 of the video. It is clear that the AV correlation results

are good as only the First Speaker is gesturing while the other

two are politely listening (2b). Also the speaker localisation

(SL) data shows good results (2c), only they are more oriented

towards the floor. The fusion output in Figure 2d shows how

the localisation and correlation data combine: the final kernel

is more oriented to the segment pointed by the SL data as its

corresponding kernel has a larger domain, hence it is assumed

to be more reliable. In the successive frame in Figure 3a, Sec-
ond Speaker has started to move his hands while the Listener
has been moving his body resulting in false positive detec-

tions of the CCA approach (Figure 3b). This can be only miti-

gated by the SL corresponding segment (3c), so that the fusion

results, despite pointing out the correct speaker, still presents

false detection trails corresponding to the other people move-

ments (3d). In figure 4a the conversation has just been handed

over to the Second Speaker, the First Speaker is still gesturing

while the Listener has shifted his body to the right to meet the

Second Speaker’s gaze. This uncorrelated motion reflects on a

AV correlation total failure. Adding the speaker position corre-

sponding segment (Figure 4b) improves the CCA approach as

can be seen in Figure 4d. It is important to highlight that, the

nature of the experiments scenarios themselves (characterised

by reverberation, speech far from the sensors, small amount of
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data processing, speech overlaps and background noise) make

TDOA-based SL a rough estimator of speaker position, even

if it may still represent a decent result for speaker detection.

On the other hand, SL also may benefit from using AV correla-

tion data for systems in which speaker position must be deter-

mined to the 10 cm resolution. Frame 5a is very interesting in

this sense. In this case in fact, the SL is pretty rough as the

speaker position falls into a segment which corresponds to the

speaker’s arm (Second Speaker) as can be seen in Figure 5c.

The AV correlation output which is itself wrong (Figure 5b), if

combined with the SL, results in the segment corresponding to

the actual speaker (Figure 5d). Note that in a speaker tracking

system, its centroid may be re-projected back onto the ground

plane to better the recursive estimation of the speaker trajec-

tory.

Experiment ‘Crossing’ only speaker is the person moving

from the right side of the image to the left side (speaker). A

second person (distracting person) walks in the opposite fash-

ion causing an occlusion and gross distracting motion. In Fig-

ure 6a the AV CCA output points originally out the current AV

source in the image (Figure 6b). This is actually better once

the “localisation” segment (Figure 6c) has been fused into the

final estimation (Figure 6d). Nevertheless, after the occlusion

has occurred in Figure 7a the AV correlation algorithm detect

an area which does not correspond to the speaker (7b) nor to

the distracting person. This is mainly due to the fact that this

particular output segment has a larger contribution to the AV

correlation over the entire video sequence. In fact, that area

shows high motion velocity and acceleration values in all the

analysed frames. Figure 7d shows the AV foreground detection

recovering obtained after adding in the SL data (Figure 7c).

5. Conclusion and Future Work

This paper has presented a new approach to audio-video (AV)

speaker detection and localisation in a large unconstrained

environment. We have shown that we improve a state-of-the-

art AV correlation technique by adding speaking localisation

data. In particular, we have reported preliminary results of

the baseline method failing when distracting and occlud-

ing/overlapping AV sources exist in the scene and we have

provided for an alternative solution, showing that the speaker

detection and localisation qualitatively improves.

Further investigations shall be done on the fusion of the local-

isation data at different abstraction levels. For example, it may

give better results combining straight into the video feature

vector the velocity and acceleration which characterised the

“speaker trajectory segments”; in fact, they may have been

replaced during the m dimension selection by highest motion

velocity and acceleration segments which actually belong to

distracting motion non corresponding to the dominant audio

source. Furthermore, we want to implement a composite AV

dynamic Bayes network (DBN), including the presented work,

which encompasses several audio-video (AV) weak classifiers

fusing audio and video on different level of abstraction. Such

a network shall infer the role of the detected speaking person

e.g. speaker, listener, person talking on a phone, passer-by.

(a)

(b)

(c) (d)

Figure 2. ‘Cocktail Party’ Frame 2 Results. (a) shows the First Speaker talk-

ing while the other two people are listening without moving . In (b) the results

of the AV CCA analysis are given whereas (c) shows the result for the speaker

localisation (SL) algorithm. Finally, (d) presents the fusion of CCA and SL

data.

(a)

(b)

(c) (d)

Figure 3. ‘Cocktail Party’ Frame 3 Results. (a) shows the First Speaker still

talking while the Second Speaker has started to do some gesture and the Lis-
tener has moved slightly his head towards the person who is going to speak.

In (b) the results of the AV CCA are given whereas (c) shows the result for the

SL algorithm. Finally, (d) presents the fusion of CCA and SL data. These do

not totally resolve the problem, but reduce the probability for the Listener to

be the speaker and add on a high probability for the First Speaker to be yet the

actual one.
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(a)

(b) (c) (d)

Figure 4. ‘Cocktail Party’ Frame 8 Results. (a) shows the First Speaker now silent together with the Listener after the conversation has been handed over to the

Second Speaker. Note that the Listener has been shifting his body in a way such to turn better in the direction of the speaker’s (Second Speaker) gaze direction.

In (b) the results of the AV CCA are given whereas (c) shows the result for the SL algorithm. Finally, (d) presents the fusion of CCA and SL data. These do not

totally resolve the problem, but reduce the probability for the Listener to be the speaker and add on a high probability for the Second Speaker to be the actual one.

(a)

(b) (c) (d)

Figure 5. ‘Cocktail Party’ Frame 9 Results. (a) shows the Second Speaker talking while the other two people are listening. The Listener is moving slightly on

his right. In (b) the results of the AV CCA are given whereas (c) shows the result for the SL algorithm. Finally, (d) presents the fusion of CCA and SL data.

(a)

(b) (c) (d)

Figure 6. ‘Crossing’ Frame 5 Results. (a) shows the speaker moving while reading a book towards the bottom of the room while the distracting person is

moving to reach the top. (b), (c) and (d) respectively presents the AV CCA algorithm, the SL and the final fusion results.

(a)

(b) (c) (d)

Figure 7. ‘Crossing’ Frame 14 Results. (a) shows the speaker almost reaching the bottom of the room while the distracting person has almost reached the top.

(b), (c) and (d) respectively presents the AV CCA algorithm, the SL and the final fusion results. Note that now in (d) the area occupied by the speaker has been

assigned a higher probability
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