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ABSTRACT

Hyperspectral images enable the detection of targets due to the high
spectral sampling. The latest generation of sensors also provides an
unprecedented spatial resolution which is further exploited in this
article to uncover hard to detect anomalies. In particular, we model
and estimate the background building upon robust supervised linear
unmixing. We benefit from the high resolution of the data to spa-
tially constrain the background. This provides a novel framework
for exploiting both the spectral and the energy variations created by
the presence of unknown targets to detect them.

Index Terms— Hyperspectral imaging, anomaly detection, lin-
ear mixture model.

1. INTRODUCTION

Some of the latest hyperspectral sensors can now be easily mounted
on a UAV or a plane due to their compactness and low weight [2].
Besides, they offer a high spatial resolution of the area which enables
the detection of small targets (unexpected materials), for defence or
civilian applications.

In many hyperspectral analysis tasks, it is assumed that the ob-
servation process is mostly linear [3], and data are well described by
the Linear Mixture Model (LMM). In this case, it is assumed that the
observations X € R:_"Xt, where m designates the number of spec-
tral bands and ¢ the total number of pixels, correspond to a sum of n
elementary contributions. Each of them is associated with a unique
material ¢ and is assumed to be rank-1: it can be factorized as the
product between its spectral signature A’ € RT“ and its spatial
distribution S; € RiXt.

This model can be recast in the following matrix form: X =
AS + N, where A € R}'*" designates the endmembers, S €
Ri“ the abundances, and N € R™*? represents the noise term,
usually assumed to be Gaussian, accounting for perturbations and
model imperfections. Moreover, it is also generally assumed that
the abundances S sum to one and thus belong to the simplex ™'
S SF=1Vk=1.t

We will assume that some man-made targets are also present in
the observed scene. They will be modelled by an extra linear term
O € R™*’. Since the targets are rare, we can assume that O is
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column sparse. We will used the following model to represent the
observations:
X=AS+O+N,

where A, S are non-negative and A represents the known endmem-
bers of the background and S the associated abundances. The sim-
plex prior on S will not be necessarily enforced. This model has been
also presented in various settings [4], [5] and [6] as some examples.

Contributions In this article, we aim to uncover man-made tar-
gets by detecting anomalies in the residual between the background,
whose endmembers A are known, and the observations. For this
purpose, we will start by discussing the detection and false alarm
properties of some basic background modellings and associated pri-
ors. It will appear that none of the standard pixel-wise priors can
enable the retrieval of hard to detect targets while being robust to
energy and illumination variabilities.

To overcome this issue, we will further introduce some spatial
regularizations in the LMM to improve the background modelling.
In particular, we will present two approaches: the spatial regular-
ization of abundances S with the LMM and an expanded model of
the abundances, spatially constrained as well, in the spirit of the Ex-
tended LMM presented in [7].

2. GEOMETRIC INSIGHTS

The aim of this article is to investigate how to detect the outliers and
not to recover the abundances (this task is slightly different). More-
over, we simplify the detection problem by looking for the back-
ground modelling leading to the best detection properties without
the need to estimate jointly the background and outliers.

In the following, we will use the simple example presented in
Fig.1 to illustrate the problem. The background is composed of 3
materials. We are in the presence of 2 targets. We also model en-
ergy and illumination variations for all components (scaling effect
for reflectance data [7]).

2.1. Detecting the outliers

In order to model the background, we can exploit one of these geo-
metrical models: the cone model (S is non-negative) and the simplex
model (S further belongs to S™~!). We discuss briefly the interest
of these two options for outliers detection:

e Simplex model: This assumption is common in hyperspectral
unmixing [3]. Since the energy of each component is bounded, we
can separate the anomalies and the background using the energy of
the components in addition to their spectral difference, see Fig.2-(a)
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Fig. 1: 3D scatter plots of X at the bands i, j, and k illustrating the
effects of the priors (cone/simplex) on the outlier estimation. The
blue points denote the background samples, the red samples the out-
liers. The blue lines symbolize the edges of the cone generated by
A. The green arrows symbolize the estimated outliers (only for the
red samples). The samples in the magenta ellipse in (a) would be
estimated as outliers.

and the difference between Fig.1-(a) and (b). On the other hand,
we cannot deal with illumination and energy variations for the same
reason: in Fig.1 (a), most of the shadowed pixels in the magenta
ellipse would be estimated as being outliers leading to a high false
alarm rate. A shadow endmember can be added such as [8] in order
to generate a capped cone Fig.2-(c) to cope with shadowing effects
but the detection of the anomalies having a smaller energy than the
background becomes challenging.

Last, we mention that we cannot enforce the non-negativity of the
outliers with the simplex prior on the background: the residual
between the observation sample and any of its projection on the
simplex generated by A is non-positive whenever the observation
sample (the target material) is less energetic than the background
materials.

e Cone model: The abundances are only assumed to be non-
negative. A cone model prior allows for energy variations. This
more flexible model can mostly detect the anomaly based on the
spectral variation introduced by the target, Fig.2-(b). In contrast to
the simplex model, it struggles to differentiate correlated samples,
even if the energy of the man-made target is different from the back-
ground: in Fig.1 (b), one can notice that one target is hard to detect
since it is very close to the cone generated by A (anomaly spectrum
correlated with A) .

A summary of the key properties of the two models is presented
in Table 1.

Model True Positive False Positive
Simplex .
Too sensitive to energy
+ variations of the back-
ground.
Cone )
Cannot detect targets
whose spectra are cor- +
related with the back-
ground.

Table 1: Summary of the properties of the two background models
(+ indicates good properties).
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Fig. 2: Illustration of the different models with 3d scatter plot at the
bands i, j and k£ of X and n = 2. The points in blue represent
the expected background. The points on the red surface have the
same probability to be an outlier (with an energy-deviation based
hypothesis testing).

2.2. Limitations of the standard models

Methods based on the simplex prior have generally a higher true de-
tection rate since they exploit both the energy and spectral diversities
between the background and the targets. As a downside, they expose
a higher false alarm since every pixel associated with a significant
energy variation, such as a shadowed pixel, is estimated as being
an outlier. In order to keep a good true detection rate and maintain
the false alarm, we can exploit spatial information to state whether a
pixel close to the cone generated by A but not the simplex, belongs
or not to the background.

On the other hand, the cone model is too flexible and only relies
on the spectral difference between the samples and the background
material spectra A. As well, we can exploit the neighbouring in-
formation to constrain the abundance samples in order to lessen the
influence of the targets on the estimated background.

3. SPATIAL INFORMATION

In this section, we will present two methods, based upon the simplex
and the cone models, to improve the modelling of the background
exploiting the high spatial resolution of the data to spatially constrain
the background.

3.1. Cone model and regularization of the abundances

One way to exploit the spatial information is to assume that the
background abundances are spatially structured and almost piece-
wise constant. Indeed, if the spatial resolution of the data is high,
then the variations from one pixel to another are quite small and
large variations (boundaries between different components) are rare.
We can then exploit this morphological diversity between the out-
liers (rare and sparse) and the abundances (piece-wise constant), to
efficiently detect the outliers [9].

This can be achieved by using a Total Variation on S [10], [11]
without the simplex prior, which is too sensitive to energy variations.
This can be interpreted as a local simplex prior assumption, enforc-
ing the abundances to be locally constant and allowing for energy
variations.

It is worth enforcing that promoting such a spatial structure
of the abundances can be quite challenging since if they are over-
smoothed, then a large residue will appear and will be estimated
as being an outlier. We will limit these artefacts by introducing



a weighting scheme in order to regularized mostly the anomalous
samples.

This weighting scheme aims to lessen the influence of the sam-
ples which are outlying the cone generated by A. The joint weight-
ing and spatial regularization can be interpreted as a relaxed inpaint-
ing of the corrupted entries [12], [13]. This is not vital but leads to
more robustness because we do not have to over-smooth the compo-
nents in the absence of outliers.

We estimate the background by solving the following problem:

Woll; + ) ailsi®l,

i=1

argmin = [|(X — AS) )
s>0 2

The weighting matrix Wo € RY** is a diagonal matrix, whose

. O 5 _
elements are given by Woy , = Py ey Vk = 1..t where

€ and vy are some numerical constants for numerical stability and
S correspond to the non-negative projection of the observations on
the cone. Thus, it is based on the outlier estimates with the cone
model. Matrix ¢ denotes the transformed domain (wavelets, DCT,
reformulation of the TV norm etc.) in which the abundances are
sparse.

The results would be slightly improved if re-estimating the
weights according to the current estimates of S but at the cost of
increasing the computational load. Consequently, we choose to
estimate only once the weighting matrix W and to penalize the
samples having a large spectral difference with the background.

The algorithm is described as the following: i) estimate S by
assuming that it is non-negative, ii) initialize W with S and iii)
estimate S with eq.(1) with a Condat-Vu implementation [14].

The spatial resolution may be not high enough and it is then
challenging to regularize directly the abundances, which vary too
strongly from one pixel to another. In such situations, it would be
safer to consider the other method proposed in the following.

3.2. Simplified Extended Linear Mixture Model

We propose another approach for modelling the background, by sim-
plifying the Extended Linear Mixture Model (ELMM) presented in
[7]. We assume that the abundances lie in a simplex which can shift
in the cone defined by A so as to compensate energy variations.
The background is modelled with ASA, where S lie in S™~' and
A € R is a diagonal matrix. The diagonal elements of A can ac-
count for the variations of energy by deviating from 1. These shifts
will be spatially regularized in our formulation. This model, as well
as the ELMM, simply expands the abundance term in the LMM and
is equivalent to the cone model without the spatial regularization.

This model differs from the ELMM because it uses only one
factor per pixel and not one per component per pixel. Consequently,
the simplex can shift but stays parallel to the initial one with our
model, whereas in [7], the simplex can shift anyhow as long as it
stays in the cone generated in A. We point out that since our data
have a high spatial resolution, the pixels are mostly pure. Therefore,
the samples belong to the edges of the cone, for which both mod-
els are equivalent. The main benefits of the simplified model are
that its computational load is more manageable and it is also not ill-
posed (each sample is associated with a unique factorization with our
model but an infinity with ELMM without the spatial regularization).
In contrast, the ELMM handles more correctly boundaries between
background materials, especially if the energies of the background
spectra in A do not correspond exactly to the observed ones.

In many applications, the intrinsic energy of the components
and global illumination of the area are more constant than the abun-
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(a) Data 1

(b) Data 2

Fig. 3: False color images of the two datasets.

dances. Therefore, the assumption on the spatial regularity of the
energy factors is more likely to be valid than the one on the abun-
dances, especially with if the spatial resolution is not really high.
This modelling should be then more efficient than the previous cone
model with constraints on the abundances.

In order to increase the robustness of this approach, we keep
the weighting scheme proposed previously for the cone model. We
estimate the background by solving the following problem:

(@)

argmin © [[(X — ASA)Woll} +a |A®],
Sesn—1A 2
Matrix ¢ denotes the transformed domain in which the energy fac-
tors are sparse. ~

The algorithm is described as the following: i) estimate S by
assuming that it is non-negative, ii) initialize Axx = > .., Sk,
Vk = 1..t and W, iii) estimate jointly S and A alternatively with
(2) [15], with a Forward-Backward (FB) for S [16] and a Condat-Wu
[14] for A (or FB if ® is orthonormal).

4. TEST ON REAL DATASETS

We establish our comparisons on two datasets provided by the UK
Defence Science and Technology Laboratory (Dstl); see Fig.3. The
data come from the Selene trial, which collected airborne hyperspec-
tral imagery of large numbers (hundreds) of spectrally varied targets
across a two week period !,

One scene is composed of 400 x 200 pixels in radiance in the
VNIR range with 140 bands, with a resolution of 25 x 25cm. It
is assumed that the background is composed of 5 components, two
kinds of soil, road, grass and tree, whose spectra have been manually
extracted and also used in [1]. Thirty man-made targets, made of
either green or grey ceramic, exist in the scene.

The second scene is composed of 310 x 170 pixels at another
location and in the reflectance mode. Background spectra (road, soil
and two types of grass) have been estimated with VCA [17] at an-
other sunny location (the choice of A has a significant influence on
the results). It is composed of 25 targets of beige carpet which are
particularly challenging to retrieve: the spectrum of the beige car-
pet is correlated with the one of the soil (the weighting is less effi-
cient) and in contrast with the ceramics, its energy is similar to the
background. The illumination is not constant. We will estimate the
background by solving the following problems:

e (S): Simplex model: argming g1 | X — AS|[3.

Data from the Selene trial are available through the UDRC. Please con-
tact the UDRC data manager at UDRC-Datacentre @dstl.gov.uk and visit the
website for more information https://udrc.eng.ed.ac.uk/data-centre.
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Fig. 4: ROC curves for the two datasets.

e (C): Cone model argming, || X — ASH;.
e (CTV): Cone model and TV norm on the sources in eq.(1)
e (Sh.S): Proposed shifting simplex in eq.(2) with the TV norm.

The support of O is obtained from the residual X — AS: an
outlier is present if the energy of the residual, at a given pixel, is
greater than 3. This parameter 5 will vary and we will compute the
number of detected targets (True positive) and the number of false
positive detections (False alarm) for each value. The ROC curves
will be displayed for comparison between the methods.

The joint estimation of the outliers and the abundances would
not affect the support of the outliers and so the results of (S) and
(C). The results should be improved for (Sh.S) and (CTV) but not
significantly due to the weighting scheme.

4.1. Results

The ROC curves for the two datasets are displayed in Fig.4. In the
first data set, the methods (CTV) and (Sh.S), which exploit the spa-
tial information, are efficient to detect the non-obvious targets. The
cone model is also quite robust but it struggles to estimate some of
the targets, i.e. high FA for achieving 1 true positive rate. On the
other hand, the simplex method leads to a higher FA on average due
to the shadow of the tree, but more easily detects the smallest tar-
gets by using the energy variations. The energy factors are presented
in Fig.5: we can see that (CTV) and (Sh.S) can indeed recover an
energy map which is almost not affected by the targets, while still
taking into account the energy changes such as the shadow of the
tree or slightest intrinsic energy variations between 0.8 and 1.2 as
shown in the maps Fig.5.

Similar remarks hold for the second dataset. Once again, (CTV)
and then (Sh.S) are more efficient. The simplex method (S) per-
forms poorly because the illumination of the scene is not constant.
Nonetheless, even if it were constant, the simplex prior is not as dis-
criminant as for the first dataset since the background and the targets
have similar energies. Exploiting the morphological diversity be-
tween the background and the targets (CTV) is more efficient. The
results of (Sh.S) could be improved by using a regularization better
allowing for smooth variations (the TV norm prefers sharp varia-
tions).

As a summary, (Sh.S) and (CTV) are more efficient than the
pixel-wise methods. In these two examples, (CTV) was more precise
because the spatial resolution of the data was really high. (Sh.S) may
be more efficient with a lower spatial resolution.
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Fig. 5: Estimated energy factors: >, S; for (C), (CTV) and A for
(Sh.S). Top row: full area, first dataset. Bottom row: zoom on the
area with grey ceramic targets (false colour image and then energy
factor). The background energy factors have been fairly retrieved in

(f) and (g).

5. CONCLUSION

We propose two background models which benefit from the high
spatial resolution of the data to spatially constrain the background.
We can then exploit jointly the energy and spectral variations created
by the targets while being robust to energy variations of the back-
ground. The preliminary tests on real data support this approach. In
practice, spectral variabilities can be more complex than the scaling
effects considered here [18]. Modelling these variabilities is neces-
sary to maintain the false alarm rate. It is particularly challenging
within the anomaly detection framework since we need to design a
model able to synthesis these background spectral variabilities but
not the variations created by the targets. This is left to future work.
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