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Abstract—Sensor registration is fundamental in sensor fusion.
Inaccuracies in sensor location and rotation can manifest them-
selves into the measurements used in Multiple Target Tracking
(MTT), and dramatically degrade its performance. These regis-
tration parameters are often estimated separately to any multi-
target estimation, which could lead to increased computational
expense, and also to systematic errors. Recent works have shown
that MTT algorithms derived from Belief Propagation (BP) are
computationally efficient and highly scalable for large tracking
scenarios. This work presents a hierarchical Bayesian model
inspired by single-cluster methods from the Random Finite Set
(RFS) literature, that allow for the registration parameters to be
estimated jointly with the multiple target tracking. Simulations
are carried out on a multistatic radar network containing two
radars with a relative range and azimuth bias between them.
Results are presented for a particle-BP MTT algorithm, and it’s
performance is compared to that of a Sequential Monte Carlo
(SMC)-Probability Hypothesis Density (PHD) filter. The results
show that the BP algorithm outperforms the PHD implementa-
tion in terms of accuracy by around 10%.

Index Terms—Data fusion, sensor registration, belief propaga-
tion, radar, target tracking

I. INTRODUCTION

The necessity for maintaining ground and airborne surveil-
lance continues to grow. Tracking targets from different as-
pects using multiple radars is an important capability, as large
volumes of space can be scanned in a short time period.
By using sensor fusion, the output should be better in some
way, compared with using each sensor independently [1].
Sensor networks that use commercial off-the-shelf (COTS)
sensors that provide asynchronous measurements can make
the fusion problem challenging. However, having incorrect
sensor registration could vastly decrease fusion performance.
This paper presents two different implementations using a
hierarchical Bayesian model, inspired by the single-cluster
framework from Random Finite Set (RFS) methods [2]. This
framework allows for multiple estimation problems to be re-
solved simultaneously. The parent process resolves the sensor
registration, with the offspring process estimating the states of
multiple targets.

Recent advances have shown that accurate and scalable
Multiple Target Tracking (MTT) methods can be developed
through Belief Propagation (BP) and Message Passing (MP)
[3], [4]. This paper will use a particle-based BP algorithm for
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Fig. 1. Uncertainty reduction using two radars at approximately 90◦ to one
another. The down-range uncertainty in Radar A can help limit the cross-range
uncertainty of Radar B and vice-versa.

MTT, and compare performance against a Sequential Monte
Carlo (SMC) implementation of the Probability Hypothesis
Density (PHD) filter [5], [6]. The BP algorithm faciliates a
framework that will enable development of an efficient and
scalable method for joint registration and fusion in the future.
The MP method scales well, and the implementation does not
require any high-dimensional or complex operations.

In this work, the 2-D setup shown in Fig. 1 is considered,
where the two radars are located approximately 700 metres
from one another in fixed and known locations, although there
is uncertainty in their orientations. These radars detect the
same target with similar accuracy in range and bearing within
their respective frames of reference. Modern radar systems
will often have measurement uncertainty that is much smaller
down-range than it is in cross-range. Down-range uncertainty
is determined by how fast the hardware can sample the
received signal, and in modern radars this could be in the order
of a few metres. Cross-range uncertainty is usually determined
by the width of the radar beam. If this beam was projected
onto the ground, the cross-range distance may be in the order
of hundreds of metres. By using the down-range measurement
from one radar to correct for the cross-range measurement in
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the other radar, a much smaller approximation of uncertainty
is obtained as highlighted in blue in Fig. 1 [7].

A number of previous methods have been developed for mit-
igating the sensor registration problem. Pseudomeasurements
are a common method for registration [8]–[10], however these
methods treat this problem separately from the target tracking
process, and assume much smaller biases than those presented
in this work. Other previous works in the literature [11], [12]
use BP methods on Markov Random Field (MRF) representa-
tions of sensor networks to accurately calibrate sensors, while
using RFS tracking methods. The joint approach used here has
been used in a varied range of applications previously [13]–
[15] and is a special case of group or extended target tracking
[2]. This allows for modelling of objects which are conditioned
on a single, or potentially multiple, registration parameter(s).
This paper presents the ”single-cluster method” as a solution
to the sensor registration problem in a defence context. The
algorithm is demonstrated on a set of simulations using two
radars, where multiple targets are tracked and multiple regis-
tration parameters are estimated. Section II will formulate the
problem and a present derivations of the parameter likelihoods.
MTT and sensor fusion are introduced in Section III, with
simulation details and results given in Section IV. Conclusions
and future work are provided in Section V.

II. SENSOR REGISTRATION

A. Overview

For this application in particular, where multiple sensor
measurements are being fused, it is important to consider the
sensor registration problem alongside that of sensor fusion.
All measurements must be projected to a common frame of
reference correctly so that they can be fused without any
biases. Such biases could include angular orientation, timing,
or possibly sensor location itself [10]. If these biases are not
accounted for, any attempts at fusing the measurements could
lead major tracking inaccuracies. Registration errors could
stem from different sources such as incorrect alignment when
being installed, sensor drift, or even from vibrations caused
by the platform they are attached to.

The main objective of this work is to estimate the relative
bias between the two radars, as shown in Fig. 2. When both
sets of measurements are projected into a common frame, there
appears an offset in both range and azimuth, which is denoteed
by the bias vector bn = [rb, ϕb]

T . These registration errors
must also be estimated recursively along with the multiple
target states. The targets that are tracked in the surveillance
region make a contribution towards resolving these biases.

The joint estimation strategy presented here follows a
similar process to that outlined in [15] and is highlighted in
Fig. 3. The parent process in this work will be a 2-dimensional
estimation problem to resolve both bias components in bn.
This will be performed using a SMC approach [16], with
each particle representing a potential sensor configuration. It
is noted that in practice these components may vary over time,
however for this work only static parameters are considered.
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Fig. 2. An example of the sensor registration problem between two radars.
Ideally sensor fusion would be performed between the two sets of measure-
ments, however the systematic errors rb and ϕb exist between the two sets
of measurements when projected into the same frame of reference.
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Fig. 3. Flowchart of the joint registration and fusion process. Asynchronous
measurements are sent to the buffer when ready, and then used in the offspring
layer for tracking. When measurements are received from Radar B, the MOL
ℓ̂in = ℓ̂n(sin|Zn) is calculated to update the sensor registration parameter(s).

B. Parameter Likelihoods

The parameter likelihood, ℓ̂n(s|zn), where s is the current
sensor registration configuration and zn are the observations to
time-step n, relates the offspring process to the parent process.
This is propagated using a Bayes recursion by finding the
posterior P̂n(s|zn). This consists of the prediction and update
steps:

P̂n|n−1(s|zn−1) =

∫
S

f̂n|n−1(s|s′)P̂n−1(s
′|zn−1)ds

′, (1a)

P̂n(s|zn) =
ℓ̂n(s|zn)P̂n|n−1(s|zn−1)∫

S
ℓ̂n(s′|zn)P̂n|n−1(s′|zn−1)ds′

(1b)

where s′ is the previous sensor registration configuration,
and f̂n|n−1(s|s′) is its transition probability density function
(pdf). These equations are evaluated after the MTT in the



offspring process has been performed. The transition function
f̂n|n−1(s|s′) is applied to the parent likelihood first. As the
parameters are assumed to be static, small amounts of random
noise are applied to each particle state to account for small
perturbations in the parameters over time [16]. The update
step in (1b) uses the parameter likelihood value computed in
each of MTT filters to determine the new parameter estimates.

1) Likelihood for BP Algorithm: By using MP, also known
as BP or the Sum-Product Algorithm (SPA), MTT methods
with lower computational cost and better scalability can be
developed [4]. In this section, the notation closely follows that
of [3], [4]. To use a BP type algorithm for registration, a
suitable sensor-parameter likelihood function is needed. An
augmented target is defined as yn,k = [xn,k, rn,k]

T , where
xn,k is a single target state, and rn,k is a binary existence
variable. Similar to (1a), the prediction equation is:

p (yn | zn−1) =

∫
f (yn | yn−1) p (yn−1 | zn−1) dxn−1

(2)
where it is assumed the posterior at time-step n−1 can be fac-
torised as p (yn−1 | zn−1) =

∏K
k=1 p (yn−1,k | zn−1), as can

the state evolution f
(

yn | yn−1

)
=

∏K
k=1 f

(
yn,k

∣∣ yn−1,k

)
,

i.e. the joint target density is a product over all individual
target densities. Following [3, Sect V.A], this is written as

p (yn | zn−1) =
K∏

k=1

α(yn,k) (3)

where α(yn,k) ≡ α(xn,k, rn,k) is the marginal prediction:

α(yn,k) =
∑
rn,k

∫
f (yn,k | yn−1,k)

× p (yn−1,k | zn−1) dxn−1,k

Introducing the target-oriented association variables, an, the
update equation for the BP implementation can be written as,

p (yn,an | zn) =
p (zn | yn,an) p (yn | zn−1)

p (zn | zn−1)
(4)

where p (zn | yn,an) is the single-object association likeli-
hood, p (yn | zn−1) contains the predicted target states from
(2), and p (zn | zn−1) is the evidence term necessary for
deriving the sensor-parameter likelihood function. A stretch-
ing process is used to reduce message dimensionality and
computational complexity. Here, the random vector bn is
introduced, which is an alternative measurement-oriented as-
sociation variable, and can be derived directly from an [3].
Stretching introduces loops into factor graphs, and these loops
create instances where the messages or beliefs are no longer
exact. However, in [4] it is shown the algorithm will still
converge. By using an and bn, high-dimensional factors in
the graph have been replaced with many lower-dimensional
factors. Using stretching [3, Eq. (27)] and (4), it is shown:

p(yn, an|zn) =
∏K

k=1 v(yn,k, an,k|zn)
∏K

k=1 α(yn,k)
p(zn|zn−1)

. (5)

where (see [3, Eqs. 11 & 17] for complete details and caveats):

v(yn,k, an,k|zn) =
f(zn,m|xn,k)

fFA(zn,m)

Pd(xn)

µc
, (6)

with fFA(zn,m) representing the clutter distribution, µc being
the mean number of false alarms and M is the number of
measurements, m ∈ {1, . . . ,M}. Marginalising (5) over an
and yn gives the evidence term:

p (zn | zn−1) =∑
an,k

∫
· · ·

∫ K∏
k=1

v(yn,k, an,k|zn)α(yn,k)dxn,1 . . . dxn,k

(7)

which reduces, using the definition in [3, Eq. (31)], to:

ℓ̂n(s|zn) = p(zn|zn−1) =

ak∑
ak=0

K∏
k=1

β(an,k) (8)

where β(an,k) is defined by

β(an,k) =
∑
rn,k

∫
v(yn,k, an,k; zn)α(yn,k) dyn,k (9)

Note that β(an,k) can be interpreted as an approximation of
the single-target association weights commonly found in the
Probabilistic Data Association (PDA) and Joint Probabilistic
Data Association (JPDA) filters [17].

2) Likelihood for PHD Filter: The parameter likelihood for
the PHD filter is derived in [18], [19], and for a given sensor
configuration s is,

ℓ̂n(s|zn) =∏
z∈z[µc,n (z) +

∫
X pd (xn) gn (zm | xk, s)µn|n−1 (dx | s)]

exp
[∫

Z µc,n (z) dz+
∫
X pd (xn)µn|n−1 (dx | s)

]
(10)

where pd (xn) is the probability of detection, gn (zm | xk, s)
is the single-object likelihood, µc,n (z) is the clutter intensity
and µn|n−1 (dx | s) is the predicted intensity.

III. PARTICLE IMPLEMENTATIONS OF MTT
A. Particle-BP Algorithm

These methods are a close approximation to Bayesian in-
ference, and provide a flexible trade-off between computation
time and accuracy. By using a particle implementation of BP, it
is possible to overcome non-linearities between the state space
and observation space, along with the potentially unknown and
time-varying number of targets [4].

The main attraction of using the SPA is it’s efficiency in
computing the marginal posterior pdfs that are required for
target tracking, compared to computing them using direct
marginalisation. To use SPA for marginalisation, it is assumed
the joint posterior pdf f (x | z1:n), for arbitrary state x, can be
seen as a product of M lower-dimensional factors of subsets
of x, denoted x(m), such that

f (x | z1:n) ∝
M∏

m=1

ψm

(
x(m)

)
. (11)



The MP implementation used in this work is given in [3].
This implementation can be seen as an SPA-based reformu-
lation of the Joint Integrated Probabilistic Data Association
(JIPDA) filter [20]. Each target is represented by it’s own
distribution of N particles, which are fitted to a Gaussian
distribution in order to perform the data association (DA)
step. Measurements are associated to these Gaussians using
the Sum-Product Algorithm for Data Association (SPADA)
[21], and β(an,k), and in turn ℓ̂n(s|zn), can be evaluated.

B. PHD Approach

The PHD filter is a recent development in the MTT field [5],
[6], [22]. This filter propagates the first-order moment of the
target distribution, and assumes both the predicted number of
targets and the clutter cardinality are both Poisson distributed.
The parameter likelihood in (10) is implemented as part of the
filter update step. This function will simplify as the integrals
become summations of all components for one measurement,
i.e. a sum of the corresponding component weights.

This particle-based implementation of the PHD filter can
work explicitly with non-linearities. Direct application of
typical SMC methods to propagate the intensity function used
in the PHD filter would fail as the intensity function is not
strictly a pdf, and the recursion used in the filter is not
the exact standard Bayes recursion. Instead for this SMC
implementation, the intensity function is represented by a large
set of weighted random samples which are propagated over
time using a generalised importance sampling and resampling
strategy [6]. The number of particles used can be continually
adapted, depending on the estimated number of targets in
the surveillance region. Note that the main implementation
difference between this and the MP approach is that the PHD
implementation uses a general particle distribution to represent
all targets in the state-space, rather than having N particles
specifically for each individual target.

IV. SIMULATION

In order to compare each of the offspring processes, a sim-
ulated scenario has been made, consisting of two crossing tar-
gets; a challenging manoeuvre for tracking algorithms to cor-
rectly decipher at the crossing point. The parent process in this
work is represented by 300 particles. These particles are ini-
tialised on a uniform grid between rb = [−150m→ +150m]
and ϕb = [−3◦ → +3◦], and are resampled using stratified
resampling [23] when the effective sample size is below a
given threshold [16]. All results shown have been averaged
over 50 Monte-Carlo (MC) runs. Tracking accuracy for each
type of offspring process is compared by using the Optimal
Sub-Pattern Assignment (OSPA) metric [24]. The parameters
for the OSPA metric are p = 2 and c = 100m.

From Fig. 4, the importance of taking the sensor registration
into account when performing fusion can be seen. If fusion
is performed with uncalibrated sensors, a large increase in
the OSPA distance is observed. Tracking with a single radar
is accurate in itself, but performance can be increased by
including a second radar. The method presented in this paper is

TABLE I
TRACKING PARAMETERS

Quantity Symbol Value
Detection Probability pd 0.99
Survival Probability ps 0.95
Pruning Threshold τprune 0.001

Extraction Threshold τextract 0.5
False Alarm Rate λr 2

Birth Intensity µb 0.01
Acceleration Noise q 1 ms−2

Radar Measurement Noise σrr , σϕr 5m, 0.002◦

Particles per Target N 1000

Maximum Number of Targets K 5

shown by the estimated registration plot, which does not reach
the optimal correct registration result, but is a vast increase in
accuracy over the incorrect registration result.

Fig. 5 shows the parameter estimates taken from the parent
process. These are extracted as the Maximum A Posteriori
(MAP) of the particle distribution. The estimates for ϕb are
accurate to within 0.2◦ for the PHD approach, whereas the MP
approach gives consistently more accurate estimates to within
0.1◦. The rb estimates appear more erratic around the true
value however, due to the physics of the presented problem.
Angular errors could result in biases of tens or hundreds
of metres, making the estimation much less accurate. Small
changes in range (< σrr ) will make little difference to the
estimation and to the likelihood value passed to the parent
process, hence why variations of approximately ±3m around
the true value can be observed.

V. CONCLUSIONS AND FUTURE WORK

From the results, it can be seen that the MP approach gives
more accurate tracking in terms of the OSPA metric, and also
gives more accurate estimates of the registration parameters.

Following on from this work, we wish to improve the
performance of the MP approach further. This could be
achieved by replacing the single-cluster method with further
MP operations, such that the joint estimation is completely
evaluated using messages and beliefs.
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