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Abstract—Adaptive waveform design in MIMO radar can im-
prove the estimation of target parameters. Comparing the relative
benefits of known optimality criteria, namely the A-optimal,
D-optimal and E-optimal criteria, is important to inform the
best implementation of actual MIMO radar adaptive waveform
design systems. In this paper we provide such a comparison, both
theoretically and by assessing simulated numerical results. Whilst
all three criteria are complementary, and thus all potentially
could have a role in adaptive waveform design for MIMO radar,
our results indicate that a system which generally uses A-optimal
design, but switches to E-optimal design in some circumstances
may be suitable for practical application.

I. INTRODUCTION

Adaptive waveform design for active sensing leverages
information acquired from the received reflected signals to
inform the design of future waveform transmissions to max-
imise, in some sense, the information we can expect to obtain.
One particularly fertile field for application of such techniques
is MIMO radar, and the types of techniques we consider are
sometimes included under the broad term cognitive radar [1]–
[3]. An important quantity for such design is the expected
covariance matrix, Γ𝑘, given a particular waveform design at
the ‘𝑘𝑡ℎ’ step, which can be expressed (from [4, Eq. (11)]):

Γ𝑘 =

∫∫
(𝜽𝑘 − 𝜽𝑘)(𝜽𝑘 − 𝜽𝑘)

𝑇

𝑝(𝜽𝑘∣X𝑘−1,S𝑘−1)𝑝(X𝑘∣𝜽𝑘,S𝑘) dX𝑘 d𝜽𝑘, (1)

where 𝜽𝑘 = 𝔼(𝜽𝑘∣X𝑘,X
𝑘−1,S𝑘,S

𝑘−1), i.e., the expected
estimate of 𝜽𝒌, itself a random variable. The other terms are
related by the standard MIMO radar formulation (with 𝑁𝑇

transmission elements, 𝑁𝑅 receiving elements and 𝐿 snapshots
per step:

X𝑘 = H𝑘(𝜽𝑘)S𝑘 +N𝑘, (2)

where S𝑘 ∈ ℂ
𝑁𝑇×𝐿 is the transmitted waveform, X𝑘 ∈

ℂ
𝑁𝑅×𝐿 is the received waveform and H𝑘(𝜽𝑘) ∈ ℂ

𝑁𝑅×𝑁𝑇

represents the channel response as a non-linear function (in
general) of 𝜽𝑘, a vector of the 𝑄 parameters of the target,
i.e., 𝜽𝑘 ∈ ℂ

𝑄×1, and N𝑘 ∈ ℂ
𝑁𝑅×𝐿 represents additive white

Gaussian noise. See [4], [5] for full details of this formulation
of MIMO radar.

An important goal in adaptive waveform design is minimisa-
tion of the variance of the next parameter estimation, formally:

minimise: Γ𝑘 w.r.t.S𝑘

subject to: tr
(
1
𝐿S𝑘S

𝐻
𝑘

) ≤ P
(3)

where tr(.) is the matrix trace operation and P is the
total transmit power per step, i.e., the constraint is a
maximum power constraint. As Γ𝑘 is a matrix (i.e., the
expected covariance matrix), this is not a strictly meaningful
expression, and it is widely accepted that there are a number
of relevant metrics associated with the expected covariance
matrix which can be minimised, namely its trace, determinant
or largest eigenvalue [4], [5]. It should be noted that the first
two of these three have been addressed for the linear-Gaussian
case [6].

In this paper, we apply all three of these criteria to a MIMO
radar set-up based on that in [4] (i.e., not linear-Gaussian)
and discuss the distinction between them in terms of practical
MIMO radar considerations. This enables us to assess the
suitability of the three criteria for MIMO radar applications,
and thus recommend an appropriate method for optimal
waveform design in MIMO radar systems.

A significant technical obstacle that we had to overcome
was that, whilst the cost-function to optimise has been
analytically expressed (2), in general its derivative cannot
be efficiently computed (except for trace optimisation, as
in [4]). Therefore it was necessary to use an optimisation
technique that did not require evaluation of the gradient of
the cost-function and this was achieved by using a random
search over the waveform design space.

In general, however, we recognise that random search
may not be a computationally efficient way to optimise the
waveform design, thus a further contribution of this work is
that it provides motivation to investigate how best to optimise
adaptive waveform designs in MIMO radar systems. That
is, in light of the fact that the results and discussion herein
indicate that D and E optimal adaptive waveform designs
(which cannot be computed using gradient methods) do
have a place in actual MIMO radar systems. Moreover, even
for A-optimal design, we note that general search methods
(i.e., including meta-heuristic optimisation, grid search and
random search) have a larger search area than gradient
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methods, and thus may better optimise the cost function
which is multi-modal. It is also acknowledged that the heavy
computational complexity associated with the calculation of
the cost-function gradient is one of the main potential barriers
to the feasibility of adopting such adaptive waveform design
methods in actual MIMO radar systems [4].

II. OVERVIEW OF OPTIMALITY CRITERIA

The field of adaptive waveform design is closely related
to that of optimal experimental design [7], and it adds some
value to interpret our three optimisation criteria in terms of the
latter. In particular, minimisation of the trace of the expected
covariance matrix is denoted ‘A-optimality’, and corresponds
to minimisation of the expected mean squared error. For this
reason it is also referred to ‘estimation-theoretic optimisation’.
Within the field of adaptive waveform design, A-optimal
design is typically the optimisation metric of choice, owing
to its straightforward interpretation and the elegance of its
analytic expression (i.e., [4, Eq. (11)]) [4], [5].

Minimisation of the determinant of the expected covariance
matrix is termed ‘D-optimal design’ in optimal experimental
design nomenclature, and it can be thought of in terms of
information theoretic concerns. Specifically, in the linear-
Gaussian case minimising the determinant maximises the
mutual information (MI) between the target parameters and
the received signal [6]. Maximisation of MI is in general, an
important metric for adaptive waveform design, but not one we
explicitly consider here as it has already been well addressed
[6], [8]–[10].

Finally, minimisation of the largest eigenvector is denoted
‘E-optimality’ in optimal experimental design nomenclature,
and is the least researched in the context of application to
adaptive waveform design. E-optimality designs the waveform
to minimise the worst case variance, and in MIMO radar this
may be dominated by parameters associated with one particle
target (for example a more distant target whose reflected signal
has a lower amplitude), and accordingly we would expect
the waveform to be designed to better resolve the parameters
of this target. So it follows that the theoretical notion of
E-optimality may have interesting practical application to
adaptive waveform design in MIMO radar.

Note that optimal experimental design literature generally
considers the inverse of the expected variance matrix, known
as the ‘information matrix’, and thus A-optimality corresponds
to trace maximisation of the information matrix, D-optimality
corresponds to maximisation of the determinant of the infor-
mation matrix and E-optimality corresponds to maximisation
of the minimum eigenvalue of the information matrix. The
definitions we use herein are equivalent to these, and more
relevant for our application.

III. IMPLEMENTATION OF A GENERAL OPTIMISATION

FRAMEWORK FOR GENERAL OPTIMAL DESIGN METRIC

As in [4], we consider adaptive waveform design in a
Bayesian setting where the posterior probability density func-

tion (PDF) of 𝜽𝑘 is approximated by a finite size probability
mass function:

𝑝(𝜽𝑘∣X𝑘−1,S𝑘−1) ≈
𝑁𝑃∑
𝑖=1

𝑤
(𝑖)
𝑘 𝛿(𝜽𝑘 − 𝜽

(𝑖)
𝑘 ), (4)

for some 𝑁𝑃 , where 0 ≤ 𝑤
(𝑖)
𝑘 ≤ 1 is the weight of the 𝑖𝑡ℎ

particle. Additionally, a further pair of random variables is
defined:

𝜽
′(𝑚)
𝑘 ∼ ∑𝑁𝑃

𝑖=1 𝑤
(𝑖)
𝑘 𝛿(𝜽

′(𝑚)
𝑘 − 𝜽

(𝑖)
𝑘 )

X
(𝑚)
𝑘 ∼ 𝑝(X

(𝑚)
𝑘 ∣𝜽′(𝑚)

𝑘 ,S𝑘(0))
, (5)

for the 𝑚𝑡ℎ sample, where S𝑘(0) is a fixed realisation of S𝑘.
This enables (1) to be numerically approximated:

Γ𝑘≈
𝑁𝑆∑
𝑚=1

(∑𝑁𝑃

𝑖=1 𝑤
(𝑖)
𝑘 𝑝(X

(𝑚)
𝑘 ∣𝜽(𝑖)

𝑘 ,S𝑘)𝜽
(𝑖)
𝑘∑𝑁𝑃

𝑖=1 𝑤
(𝑖)
𝑘 𝑝(X

(𝑚)
𝑘 ∣𝜽(𝑖)

𝑘 ,S𝑘)
− 𝜽

′(𝑚)
𝑘

)
×

(∑𝑁𝑃

𝑖=1 𝑤
(𝑖)
𝑘 𝑝(X

(𝑚)
𝑘 ∣𝜽(𝑖)

𝑘 ,S𝑘)𝜽
(𝑖)
𝑘∑𝑁𝑃

𝑖=1 𝑤
(𝑖)
𝑘 𝑝(X

(𝑚)
𝑘 ∣𝜽(𝑖)

𝑘 ,S𝑘)
− 𝜽

′(𝑚)
𝑘

)𝑇

×

𝑝(X
(𝑚)
𝑘 ∣𝜽′(𝑚)

𝑘 ,S𝑘)/𝑝(X
(𝑚)
𝑘 ∣𝜽′(𝑚)

𝑘 ,S𝑘(0))∑𝑁𝑆

𝑚′=1 𝑝(X
(𝑚′)
𝑘 ∣𝜽′(𝑚′)

𝑘 ,S𝑘)/𝑝(X
(𝑚′)
𝑘 ∣𝜽′(𝑚′)

𝑘 ,S𝑘(0))
,

(6)

where 𝑁𝑆 samples of the pair (𝜽
′(𝑚)
𝑘 ,X

(𝑚)
𝑘 ) are drawn from

(5) (see [4] for full justification of this approximation). Notice
that Γ𝑘 is expressed as the sum of 𝑁𝑆 matrices, so it follows
that, unlike for the case of trace optimisation (where the cost
function can be expressed as a sum of scalars each of which
is expressed as a function of S𝑘), explicit expression of the
determinant and largest eigenvalue of (6) in terms of S𝑘

(i.e., for differentiation) is not trivial, and more importantly
would not lead to a computationally feasible expression for
the derivative. For this reason, we make the practical decision
to optimise the cost function without evaluating the gradient.
In addition to random or grid search, there exist myriad
‘meta-heuristic’ optimisation methods to achieve this [11].

A general definition of the class of algorithms that only
require evaluation of the cost function (by definition a
maximum of 𝑁𝐶 times), and not its derivative, is given in
Algorithm 1, in which we denote the type of optimality (A,
D or E) as ℳ(Γ)

Algorithm 1 General Optimisation Framework

For: 𝑛 = 1 : 𝑁𝐶

S(𝑛) = 𝑓(S(1) . . .S(𝑛− 1),ℳ(Γ(1)) . . .ℳ(Γ(𝑛− 1)))
Evaluate: Γ(𝑛) = Γ(S(𝑛)) according to (6)
Evaluate: ℳ(Γ(𝑛))

End For
Return: Γ𝑘 = argmin(ℳ(Γ(1)) . . .ℳ(Γ(𝑛− 1)))

From Algorithm 1, we can see that ‘𝑓 ’ is the function
which tells us how to choose the next S𝑘 at which to evaluate
the cost function. In grid search and random search, this
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Fig. 1. Example of optimal waveform design for targets with approximately equal prior PDF.

is independent of the previous cost function evaluations,
however in meta-heuristic algorithms this information is
used to inform the next location at which to evaluate
the cost function. Thus Algorithm 1 represents a general
optimisation framework for adaptive waveform design, where
any combination of meta-heuristic optimisation method and
optimisation metric can be chosen.

IV. NUMERICAL SIMULATIONS AND RESULTS

For the optimisation method, (𝑓(.) in Algorithm 1), we use
random search, which suffices to prove the principle that the
three optimality criteria lead to different adaptive waveform
designs. Additionally, computation was not especially con-
strained for the numerical simulations provided herein and
so a relatively large number (100) of random trial waveform
designs could be evaluated for each scenario, and thus it was
preferable to do so rather than risk prejudicing the results with
a choice of meta-heuristic optimisation method that turned out
to be especially suited to only a subset of the three optimality
criteria. Moreover, by randomly pre-selecting the ensemble
of possible waveforms, and keeping this the same for the

three optimality criteria, the optimisation processes for the
three criteria were all provided exactly the same candidate
waveform, which was useful for drawing conclusions on their
differences.

To illustrate the adaptive waveform designs produced by the
three optimality criteria, it is preferable to use a multi-target
scenario, and to this end we use a two target experimental
set-up based on that in [4]. That is, the target parameter
vector consists of the two stationary target parameter angles,
𝜃 = [𝜙1;𝜙2], 90𝑜 ≤ 𝜙1, 𝜙2 < 90𝑜 (thus 𝑄 = 2). It follows
that, for MIMO radar, (2) can be expressed:

X𝑘 =

𝑄∑
𝑞=1

𝛼𝑞a𝑅(𝜙𝑞)a
𝑇
𝑇 (𝜙𝑞)S𝑘 +N𝑘, (7)

where H𝑘 =
∑𝑄

𝑞=1 𝛼𝑞a𝑅(𝜙𝑞)a
𝑇
𝑇 (𝜙𝑞), in which 𝛼𝑞 is the

complex attenuation of the 𝑞𝑡ℎ target (treated as known for
simplicity) and a𝑅 ∈ ℂ

𝑁𝑅×1 and a𝑇 ∈ ℂ
𝑁𝑇×1 are the

steering vectors associated with the receive and transmit
arrays respectively.

As in [4] we use 𝑁𝑇 = 𝑁𝑅 = 5, 𝐿 = 1, 𝑁𝑃 = 1770
(a resolution of 3𝑜), 𝑁𝑆 = 250 and [𝜙1;𝜙2] = [−40𝑜; 20𝑜].
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Fig. 2. Example of optimal waveform design for targets with unequal prior PDF.

In general, the system may run for many steps, however for
illustrative purposes we show just two steps (i.e., a single
waveform design), to achieve this we increase the Array Signal
to Noise Ratio (ASNR) such that the first adaptive waveform
design is meaningful. We found ASNR = 6 𝑑𝐵 to be a
suitable value, where ASNR ≜ (∣𝛼1∣2+ ∣𝛼2∣2)P𝑁𝑅𝐿/(0.5𝜎

2
𝑛)

(in which the factor 0.5 in the denominator is introduced
owing to our definition of 𝜎2

𝑛 as the noise variance for each
of the real and imaginary components). We consider two
scenarios, firstly ‘equal attenuation’, where ∣𝛼1∣ = ∣𝛼2∣ and
secondly ‘unequal attenuation’. where ∣𝛼1∣ = 0.5∣𝛼2∣. These
are shown in Fig. 1 and Fig. 2 respectively. In these plots the
marginal PDF of the target location for the target located at
−40𝑜 is shown in black, and the marginal PDF of the target
location for the target located at 20𝑜 is shown in red.

For the first step, the transmitted waveform is uniformly
spread with angle as there is no information to adaptively
design the waveform (‘orthogonal’ transmission), and so it is
unnecessary to include this in the plots of the results. Thus
the results appear as the PDF after the reflections received
from the orthogonal transmission at step one, followed by the
waveform design, followed by the PDF after the reflections

received from the designed transmission at step two. So it
follows that the two PDFs can readily be interpreted as a prior
and a posterior respectively. To ensure a fair comparison, we
fixed the prior to be the same for all three optimal design
criteria in each scenario.

V. DISCUSSION

Considering first the adaptive waveform designs for the
case where the two target locations are approximately equally
known a priori, as exemplified in Fig. 1, we observe that the
design processes according to the A-optimal and D-optimal
criteria have chosen the same waveform design, whereas that
of the E-optimal criteria is different. In the case of the latter,
we can see that a greater amount of power has been steered
towards the non-zero region of probability density for the
target located −40𝑜 around 0𝑜 to 20𝑜.

Whilst such a conclusion may appear somewhat tenuous
in this case, the second example shown in Fig. 2, in which
the prior PDF of the target located at −40𝑜 has significantly
higher variance than that of the target located at 20𝑜, reinforces
this effect. In this plot, we can see that the design processes



according to the A-optimal and E-optimal criteria have chosen
the same waveform design, whereas that of the D-optimal
criteria is different. Moreover, we can see that, again there is a
region of non-zero probability density around 20𝑜 for the target
located at −40𝑜 and the A-optimal and E-optimal designs steer
a peak to this angle, whereas the D-optimal design steers a
null. Additionally, for the D-optimal design the majority of
the power is steered in a wide beam towards the (relatively
certain) target at 20𝑜, whereas the A-optimal and E-optimal
designs actually steer a null to this angle.

Taking a more general view, it is perhaps ill-advised to
rely too heavily on our interpretation of these two examples
alone, to draw general conclusions regarding the differences
between the three optimality criteria for adaptive waveform
design in MIMO radar. Rather, it is merely possible to state,
definitively, that the three criteria have, definitively, selected
different waveforms given the same prior PDF and set of
waveforms from which to chose. Thus we are motivated to
attempt to interpret this fact in terms of the definitions of the
three criteria.

The key to doing this is to realise that the target locations are
independent, and thus the expected covariance matrix should
be diagonal (or approximately diagonal for the numerical ap-
proximation). In this case, the three criteria can be simplified:

A-optimal: min

(
𝑄∑
𝑖=1

𝜎2
𝑖

)
,

D-optimal: min

(
𝑄∏
𝑖=1

𝜎2
𝑖

)
,

E-optimal: min

(
max
𝑖=1:𝑄

(
𝜎2
𝑖

))
,

where 𝜎2
𝑖 is the variance of the estimate of the location of the

𝑖th target.
This clearly shows the difference between E-optimal design

and the other two, as the former is concerned with the variance
of the least certain target. We can see evidence of this in
the third row of Fig. 2, where the marginal posterior PDFs
of the two targets have similar appearance for the E-optimal
design, whereas those of the D-optimal design are still very
unequal (note that we used the same random noise realisation
for consistency).

Such a property potentially has practical implications for
real-world MIMO radar applications. For example, one can
envisage a system in which the A-optimal or D-optimal
criterion was used in general, with the option of switching
to use the E-optimal criterion if is desired to improve the
parameter estimates associated with the most uncertain target.

The relative benefits of A-optimal and D-optimal design is
somewhat more subtle, and still the subject debate in the field
of optimal design, however it is worth noting that A-optimal
design is computationally more simple (as (6) reduces to a
sum of scalars rather than matrices, as in [4]). Furthermore,
the results in Fig. 2 suggest that A-optimal design shares the
desirable property of E-optimal design of focussing the power

on the less certain target, whereas D-optimal design does not
necessarily do so. We do, however, realise that this may not
be the case for a larger number of targets.

In summary, we tentatively recommend a system in which
A-optimal design is generally used, but E-optimal design is
switched to if better estimation is required for a particular,
relatively uncertain, target.

VI. CONCLUSIONS

In this paper we have applied three well known optimal
design criteria, namely A-optimal, D-optimal and E-optimal,
to the problem of adaptive waveform design in MIMO radar
systems. Our results show that the waveforms designed accord-
ing to the three criteria differ, and moreover that this difference
corresponds to what one would expect from physical reason-
ing. In light of these results we recommend an embodiment
for actual MIMO radar systems combining A-optimal and E-
optimal design.
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