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Abstract—In traditional direction-of-arrival (DoA) estima-
tion, the number of sources to be detected is widely assumed
to be smaller than the number of physical sensors. In practice,
however, the number of sources encountered may be greater
than that of the sensors. To address this problem, nested array
structure can be considered, however, the effects of mutual
coupling between sensors may become significant when the sen-
sors are located closely. Recently, the co-prime array structure
has been developed to further enhance the uniform degrees-
of-freedom (DoF) with less mutual coupling, by utilizing a co-
prime pair of uniform linear subarrays. This paper proposes a
pair of co-prime arrays with reduced sensors (CARS) structure,
where the first array is shifted until symmetrical to the center
(reference sensor) and the number of sensors in the second
array can be reduced as compared to existing optimized co-
prime array configurations, according to the odd and even of the
co-prime number pair. Furthermore, with the CARS structure,
much more uniform DoF can be detected. The feasibility of the
proposed CARS structure is demonstrated by numerical results
of DoA estimations for multiple stationary sources with noise.

I. INTRODUCTION

Source localisation, such as direction-of-arrival (DoA)
estimation, is an important issue in applications, including
underwater acoustic detection, target tracking and environ-
mental monitoring [1] [2]. This problem has been studied
extensively, with many methods proposed, including the pop-
ular subspace-based methods, such as MUSIC and ESPRIT
[3] [4]. However, with an 𝑁 -element uniform linear array
(ULA), the number of sources that can be detected by e.g.
the MUSIC algorithm is 𝑁 − 1 [3]. As a result, such a
method is limited when more sources than the number of
sensors need to be detected. To address this problem, the
nested array structure, which is obtained by combining two
or more ULAs, was introduced in [5] to enhance the uniform
degrees-of-freedom (DoF) through generating 𝑂(𝑁2) co-
array elements from 𝑂(𝑁) array elements. The uniform DoF
here denotes the cardinality of the maximum contiguous
ULA segments in the difference coarray set, which consists
of differences between any pair of sensors positions in the
array structure. The uniform DoF is required to implement
MUSIC and ESPRIT algorithms. Although the nested array
configuration is easy to construct, some of the sensors in
a nested array may be located so closely that the effect of
mutual coupling between sensors becomes significant [6] [7].

As an alternative, a co-prime pair of uniform linear sub-
arrays structure based on [8] has been developed in [9],

where one of the subarrays consists of 𝑀 sensors with
an inter-element spacing of 𝑁 units and the other contains
2𝑁 − 1 sensors with an inter-element spacing of 𝑀 units,
with 𝑀 > 𝑁 and both subarrays sharing the first sensor
at the zero-th position. This co-prime array structure has
been generalized in [10] via the compression of the inter-
element spacing of one constituting subarray by a positive
integer. The co-prime array structure contains a total number
of 𝑀 +2𝑁 − 1 sensors to achieve 2𝑀𝑁 +2𝑁 − 1 uniform
DoF [10] by calculating the difference set ±(𝑀𝑛 − 𝑁𝑚),
where 0 ≤ 𝑚 ≤ 𝑀 − 1, 0 ≤ 𝑛 ≤ 2𝑁 − 1 are two
sequences to discribe the position of each sensor. Another
center symmetric co-prime array is presented in [11], where
the first subarray contains 2𝑀 sensors with −(2𝑀 −1)/2 ≤
𝑚 ≤ (2𝑀 − 1)/2 and the second subarray contains 2𝑁
sensors with −(2𝑁 − 1)/2 ≤ 𝑛 ≤ (2𝑁 − 1)/2. This pair of
subarrays constitutes a full co-array spanning a contiguous
region of ±(𝑀𝑁 + (𝑀 + 𝑁)/2 − 1). Compared to the
nested arrays, the co-prime array structure mitigates mutual
coupling, however, it uses more sensors to attain the same
uniform DoF [9] [10].

In this paper, we propose a new structure named co-prime
arrays with reduced sensors (CARS), which can achieve more
uniform DoF with fewer sensors than the one in [9]. In
particular, when 𝑀 is an even number, 𝑁 is an odd number
and 𝑀 > 𝑁 , the proposed coprime array can produce
2𝑀𝑁 + 3𝑀 − 1 uniform DoF with only 𝑀 + (3𝑁 + 1)/2
sensors (the result should be an integer as 𝑁 is an odd
number). That is, we can reduce the number of sensors by
(𝑁 −3)/2, while increasing the uniform DOF by 3𝑀 −2𝑁 ,
as a comparison to the method in [9]. When compared to the
center symmetric structure in [11], our method increases 2𝑀
more uniform DoF and uses 𝑀+(𝑁−1)/2 less sensors with
only a half of the second subarray in [11]. Another different
sensor arrangement has been presented in [12], using an
unfolded coprime array structure, where the two subarrays are
aligned along the positive axis and negative axis, respectively.
With 𝑀 +𝑁 physical elements, the unfolded coprime array
generates 2𝑀𝑁 − 1 unique number of lags. However, the
region is not continuous, i.e. there are holes in it. The MUSIC
algorithm cannot be used directly for the coarray in [12].

This article is organised as follows. In Section II, the
background about the co-prime sampling array structure
in [9] and the MUSIC algorithm for DoA estimation are
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Fig. 1. The co-prime arrays structure in [9] when 𝑀 is 8 and 𝑁 is 5.

Fig. 2. The proposed CARS structure when 𝑀 is 8 and 𝑁 is 5.

presented. The proposed CARS is presented in Section III.
In Section IV, numerical results on DoA estimation by using
CARS are presented. Finally, the conclusion is drawn in
Section V.

Notations: We use lower-case (upper-case) bold characters
to denote vectors (matrices). In particular, (⋅)𝑇 and (⋅)𝐻
denote the transpose and conjugate transpose of a matrix
or vector, respectively. (̃⋅) is used to emphasize variables
corresponding to the co-prime arrays with reduced sensors.
In order to discuss the odd and even conveniently, we set a
pair of operators ⌊⋅⌋ and ⌈⋅⌉ as follows

⌊𝑁/2⌋ =
{

𝑁
2 when 𝑁 is an even integer;
𝑁−1
2 when 𝑁 is an odd integer.

(1)

⌈𝑁/2⌉ =
{

𝑁
2 when 𝑁 is an even integer;
𝑁+1
2 when 𝑁 is an odd integer.

(2)

II. BACKGROUND

A. Original Co-prime Sampling Array

We set a co-prime number pair of 𝑀 and 𝑁 , where 𝑀 >
𝑁 , without loss of generality [9]. The unit inter-element
spacing 𝑑 equals 𝜆/2, where 𝜆 denotes the wavelength. The
array sensors are positioned at

ℙ = {𝑀𝑛𝑑∣0 ≤ 𝑛 ≤ 2𝑁 − 1} ∪ {𝑁𝑚𝑑∣0 ≤ 𝑚 ≤𝑀 − 1}
(3)

As an example, Figure 1 shows the array structure with
𝑀 = 8, 𝑁 = 5. Assume p = [𝑝1, ⋅ ⋅ ⋅ , 𝑝𝑀+2𝑁−1]

𝑇 as the
positions of the array sensors where 𝑝𝑞 ∈ ℙ, 𝑞 = 1, ⋅ ⋅ ⋅ ,𝑀+
2𝑁 − 1, and the first sensor is set as the reference which is
shared by both subarrays, i.e. 𝑝1 = 0. The maximum number
of the difference lags is determined by the number of unique
elements in the following set

𝕃𝑝 = {𝑙𝑝∣𝑙𝑝𝑑 = 𝑢− 𝑣, 𝑢 ∈ ℙ, 𝑣 ∈ ℙ} (4)

The difference coarrays consist of either self-differences
of the two subarrays or their cross-differences. The self-
difference in the coarray has positions

𝕃𝑠 = {𝑙𝑠∣𝑙𝑠 =𝑀𝑛} ∪ {𝑙𝑠∣𝑙𝑠 = 𝑁𝑚} (5)

and the corresponding mirrored positions 𝕃
−
𝑠 =

{−𝑙𝑠∣𝑙𝑠 ∈ 𝕃𝑠}, whereas the cross-difference has positions

𝕃𝑐 = {𝑙𝑐∣𝑙𝑐 =𝑀𝑛−𝑁𝑚} (6)

and the corresponding mirrored positions 𝕃
−
𝑐 =

{−𝑙𝑐∣𝑙𝑐 ∈ 𝕃𝑐}, for 0 ≤ 𝑚 ≤𝑀 − 1, 0 ≤ 𝑛 ≤ 2𝑁 − 1. Thus
the full set of lags in the virtual array is given by

𝕃𝑝 = 𝕃𝑠 ∪ 𝕃
−
𝑠 ∪ 𝕃𝑐 ∪ 𝕃

−
𝑐 (7)

The number of elements in the difference co-array (given
by the set 𝕃𝑝) directly decides the distinct values of the
cross correlation terms in the covariance matrix of the signal,
however, there exist pairs of 𝑢− 𝑣 giving the same value of
difference, which causes significant mutual coupling. Thus
the concept of weight function 𝑤(𝑙𝑝) is considered.
𝐷𝑒𝑓𝑖𝑛𝑖𝑡𝑖𝑜𝑛 (𝑤𝑒𝑖𝑔ℎ𝑡 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛): The weight function

𝑤(𝑙𝑝), 𝑙𝑝 ∈ 𝕃𝑝 of an array is defined as the number of
sensor pairs which have the same value of coarray index 𝑙𝑝.
𝐷𝑒𝑓𝑖𝑛𝑖𝑡𝑖𝑜𝑛 (𝑢𝑛𝑖𝑓𝑜𝑟𝑚 𝐷𝑜𝐹 ): Let the set 𝕌 denote the

maximum contiguous ULA segment in 𝕃𝑝. The number of
elements in 𝕌 is called the number of uniform degrees-of-
freedom (uniform DoF). In this paper, in order to implement
the MUSIC algorithm, we only consider the number of
uniform DoF.

B. MUSIC Algorithm

With the original co-prime array structure described above,
the DoA can be detected using the MUSIC algorithm [9].
We assume that 𝐷 narrowband far-field sources with the 𝑖-
th signal (𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝐷) arriving in one half of the plane
and the sensor array is expected to have a perfect baffle,
which means the arrival directions are from -90 degrees to
+90 degrees along the plane of the array elements, and 0
degree is the axis of symmetry. The number of samples in
a limited time is defined as snapshot 𝐾. The directions of
source signals remain the same during snapshotting. For the
𝑘-th snapshot (𝑘 = 1, 2, ⋅ ⋅ ⋅ ,𝐾) on 𝐷 sources, its complex
amplitude is expressed as x(𝑘) ∈ ℂ

𝐷 and the DoA is
denoted by 𝜃𝑖 ∈ [−90°, 90°]. The received sensor signal
y(𝑘) ∈ ℂ

(𝑀+2𝑁−1) at the coprime array is expressed as

[y(1),y(2), ⋅ ⋅ ⋅ ,y(𝐾)] = AX+ N (8)

where A = [a(𝜃1),a(𝜃2), ⋅ ⋅ ⋅ ,a(𝜃𝐷)] ∈ ℂ
(𝑀+2𝑁−1)×𝐷,

a(𝜃𝑖)=[1, 𝑒𝑗2𝜋𝜃𝑖𝑝2 , ⋅ ⋅ ⋅ , 𝑒𝑗2𝜋𝜃𝑖𝑝𝑀+2𝑁−1 ]𝑇
𝑗≡√−1

∈ℂ(𝑀+2𝑁−1)

are steering vectors, 𝑝𝑞 ∈ p, X = [x(1),x(2), ⋅ ⋅ ⋅ ,x(𝐾)] ∈
ℂ

𝐷×𝐾 and N = [n(1),n(2), ⋅ ⋅ ⋅ ,n(𝐾)] ∈ ℂ
(𝑀+2𝑁−1)×𝐾 ,

n(𝑘) ∈ ℂ
(𝑀+2𝑁−1) is assumed to be independent

and identically distributed (i.i.d) random noise vector.
𝜃𝑖 = (𝑑/𝜆) sin 𝜃𝑖 is the normalized DoA. We can obtain
−1/2 ≤ 𝜃𝑖 ≤ 1/2. Both x and n are assumed to be vectors
of zero-mean, uncorrelated random variables with covariance
matrices of Rxx = 𝐸[xx𝐻 ] and Rnn = 𝐸[nn𝐻 ], and 𝜃𝑖 is
fixed but unknown.

The covariance matrix of data vector y is obtained as

Ryy =
𝐷∑
𝑖=1

𝜎2𝑖 a(𝜃𝑖)a
𝐻(𝜃𝑖) + 𝜎

2I (9)

where 𝜎2𝑖 is the power of the 𝑖-th source, 𝜎2 is the
noise power, a(𝜃𝑖)a𝐻(𝜃𝑖) consists of entries in the form of



𝑒𝑗2𝜋𝜃𝑖(𝑝1−𝑝2), where 𝑝1, 𝑝2 ∈ p, 𝑝1 − 𝑝2 ∈ 𝕃𝑝, and the con-
variance matrix in (9) can be reshaped into an autocorrelation
vector y𝐷 as

y𝐷 =

𝐷∑
𝑖=1

𝜎2𝑖 a𝕃𝑝
(𝜃𝑖) + 𝜎

2e0 (10)

where the noise 𝜎2e0 at the sensor location 𝑝𝑑, 𝑝 ∈ 𝕃𝑝

follows normal distribution with the average of 0 and the
noise power of 𝜎2.

In the finite-snapshot setting, where the measurenment
vectors y(𝑘), 𝑘 = 1, 2, ⋅ ⋅ ⋅ ,𝐾 are given, the covariance
matrix can be estimated by

R̃yy =
1

𝐾

𝐾∑
𝑘=1

y(𝑘)y𝐻(𝑘) (11)

The finite-snapshot version of the autocorrelation function
can be averaged from the convariance matrix by

⟨y𝐷⟩𝑙𝑝 =
1

𝑤(𝑙𝑝)

∑
(𝑝1,𝑝2),𝑝1−𝑝2∈𝕌

⟨R̃yy⟩𝑝1,𝑝2
(12)

where the angle bracket ⟨y⟩𝑝 represents the value of the sig-
nal at the sensor location 𝑝𝑑, ⟨R̃yy⟩𝑝1,𝑝2

= 𝐸[⟨y⟩𝑝1
⟨y⟩𝐻𝑝2

],
only 𝑝1 − 𝑝2 ∈ 𝕌 is considered. The weight function
𝑤(𝑙𝑝), 𝑙𝑝 ∈ 𝕌 is defined earlier.

In order to estimate the DoA 𝜃𝑖 from y𝐷, a variation of
the rank-enhanced spatial smoothing MUSIC algorithm will
be used in this paper [5] [9] [13]. The spatial smoothing step
can be modified so that the finite-snapshot autocorrelation
vector equals ⟨y𝐷⟩ according to [13]. A Hermitian Toeplitz
matrix R̃ can be constructed as

⟨R̃⟩𝑝1,𝑝2
= ⟨y𝐷⟩𝑝1−𝑝2

(13)

where 𝑝1, 𝑝2 ∈ 𝕌
+, the set 𝕌

+ denotes the non-negative
part of the maximum contiguous ULA segment. The proof
provided in [13] shows that the MUSIC spectrum over
R̃ gives the same performance as that over the spatially
smoothed matrix R̃𝑠𝑠, if the noise subspace is classified by
the magnitudes of the eigenvalues of R̃.

III. CO-PRIME ARRAYS WITH REDUCED SENSORS

(CARS) STRUCTURE

We present a new co-prime arrays structure named CARS.
The sensors in CARS are located at

ℙ̃ = {𝑀𝑛𝑑∣1 ≤ 𝑛 ≤ ⌈3𝑁/2⌉}∪
{𝑁𝑚𝑑∣ −𝑀/2 + 1 ≤ 𝑚 ≤𝑀/2 when 𝑀 is even,

−⌊𝑀/2⌋ ≤ 𝑚 ≤ ⌊𝑀/2⌋ when 𝑀 is odd.} (14)

where 𝑀 and 𝑁 are co-prime, both subarrays share the
reference sensor at the zero-th position. Figure 2 gives an
example with 𝑀 = 8, 𝑁 = 5, from which we can see
that the first array is shifted until symmetrical to the center
(reference sensor) and the number of sensors in the second
array is ⌈3𝑁/2⌉ = 8. Thus the number of physical sensors
in CARS is smaller than that in [9], but it is able to handle
more uniform DoF (see 𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦 2).

In this array configuration, both subarrays share the refer-
ence sensor at the zero-th position, the self-lags of the two
subarrays are given by the following sets

�̃�𝑠 = {�̃�𝑠∣�̃�𝑠 =𝑀𝑛} ∪ {�̃�𝑠∣�̃�𝑠 = 𝑁𝑚} (15)

and the correspoding mirrored positions �̃�
−
𝑠 , whereas the

cross-lags between the two subarrays are given by

�̃�𝑐 =
{
�̃�𝑐∣�̃�𝑐 =𝑀𝑛−𝑁𝑚

}
(16)

and the corresponding mirrored positions �̃�
−
𝑐 , where 𝑛 and

𝑚 are give in (14).
To exploit the uniform DoF of the CARS structure com-

pletely, we summarize the properties of �̃�𝑠 and �̃�𝑐. We also
give the proof of each property.
𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦 1: There are (⌈3𝑁/2⌉ + 1)𝑀 distinct integers

in set �̃�𝑐.
𝑃𝑟𝑜𝑜𝑓 : Suppose that 𝑀 is even, 𝑁 is odd, both subarrays
share the zero-th position as the reference sensor, �̃�𝑐1 =
𝑀𝑛1−𝑁𝑚1 and �̃�𝑐2 =𝑀𝑛2−𝑁𝑚2 as two arbitrary differ-
ences in set �̃�𝑐, where −𝑀/2 + 1 ≤ 𝑚1 ≤𝑀/2, 0 ≤ 𝑛1 ≤
⌈3𝑁/2⌉ and −𝑀/2 + 1 ≤ 𝑚2 ≤ 𝑀/2, 0 ≤ 𝑛2 ≤ ⌈3𝑁/2⌉.
If �̃�𝑐1 = �̃�𝑐2, we would have

𝑀/𝑁 = (𝑚1 −𝑚2)/(𝑛1 − 𝑛2) (17)

As −𝑀/2 + 1 ≤ 𝑚1 ≤𝑀/2,−𝑀/2 + 1 ≤ 𝑚2 ≤𝑀/2, we
obtain 𝑚1−𝑚2 ≤𝑀 −1. However 𝑀 and 𝑁 are co-prime,
the equation (17) cannot be held, which means �̃�𝑐1 ∕= �̃�𝑐2.
Thus, there are (3𝑁𝑀 + 3𝑀)/2 distinct integers in set �̃�𝑐,
which is similar to the case when 𝑀 is odd, 𝑁 is even, and
when 𝑀 is odd, 𝑁 is odd. ■
𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦 2: The uniform DoF of the proposed array

structure is as follows:
(1). When𝑀 is even,𝑁 is odd, �̃�𝑐∪�̃�−

𝑐 contains the contigu-
ous (hole-free) region spanning within ±(𝑀𝑁 +3𝑀/2− 1)
and the uniform DoF is 2𝑀𝑁 + 3𝑀 − 1.
(2). When 𝑀 is odd, 𝑁 is even, �̃�𝑐 ∪ �̃�

−
𝑐 contains the

contiguous (hole-free) region spanning within ±(𝑀𝑁 +
𝑁/2+𝑀−1) and the uniform DoF is 2𝑀𝑁+𝑁+2𝑀−1.
(3). When 𝑀 is odd, 𝑁 is odd, �̃�𝑐 ∪ �̃�

−
𝑐 contains the

contiguous (hole-free) region spanning within ±(𝑀𝑁 +
𝑁/2+3𝑀/2−1) and the uniform DoF is 2𝑀𝑁+𝑁+3𝑀−1.
𝑃𝑟𝑜𝑜𝑓 : We consider the situation when 𝑀 is even, 𝑁 is odd.
Given

0 ≤ �̃�𝑐 ≤𝑀𝑁 + 3𝑀/2− 1 (18)

Since

−𝑀/2+ 1 ≤ 𝑚 ≤𝑀/2 ⇒ −𝑀𝑁/2+𝑁 ≤ 𝑁𝑚 ≤𝑀𝑁/2
(19)

and

�̃�𝑐 =𝑀𝑛−𝑁𝑚⇒𝑀𝑛 = �̃�𝑐 +𝑁𝑚 (20)

We have

−𝑀𝑁/2 +𝑁 ≤𝑀𝑛 ≤ 3𝑀𝑁/2 + 3𝑀/2− 1 (21)



Since 𝑀 and 𝑁 are integers, we get

−𝑀𝑁/2 +𝑁 ≤𝑀𝑛 < 3𝑀(𝑁 + 1)/2 (22)

⇒ −𝑁/2 +𝑁/𝑀 ≤ 𝑛 < 3(𝑁 + 1)/2 (23)

When 𝑛 < 0,𝑀𝑛 < 0. If �̃�𝑐 = 𝑀𝑛 −𝑁𝑚 > 0, 𝑚 < 0. As
𝑁(−𝑚)−𝑀(−𝑛) = 𝑁�̆�−𝑀�̆�, which can be regarded as
the flipped positive values in 𝑀𝑛 − 𝑁𝑚. So we only need
to consider 𝑛 ≥ 0 and obtain

1 ≤ 𝑛 ≤ (3𝑁 + 1)/2 (24)

Thus �̃�𝑐 ∪ �̃�
−
𝑐 contains all the contiguous integers in the

range −𝑀𝑁 − 3𝑀/2 + 1 ≤ �̃�𝑐 ∪ �̃�
−
𝑐 ≤𝑀𝑁 + 3𝑀/2− 1,

where −𝑀/2 + 1 ≤ 𝑚 ≤𝑀/2, 1 ≤ 𝑛 ≤ ⌈3𝑁/2⌉.
𝑅𝑒𝑚𝑎𝑟𝑘: The configuration proposed in [9] and [10] can
achieve a maximum of 2𝑀𝑁 + 2𝑁 − 1 uniform DoF with
𝑀 + 2𝑁 − 1 sensors, whereas our CARS structure can
detect 2𝑀𝑁 +3𝑀 − 1 uniform DoF with 𝑀 + (3𝑁 +1)/2
sensors. Thus, our proposed system can use fewer sen-
sors to significantly improve the number of uniform DoF.
The center symmetric co-prime array in [11] can achieve
2𝑀𝑁+𝑀+𝑁−1 uniform DoF with 2𝑀+2𝑁 sensors when
both subarrays have an odd number of sensors, due to the
center symmetric structure of both subarrays. However, in our
method, the first subarray is center symmetric with only 𝑀
sensors, and the second subarray is not center symmetric with
a sensor reduction of ⌊𝑁/2⌋, to achieve 2𝑀 more uniform
DoF.

Similarly, we can prove for the other two situations, of
which the one is when 𝑀 is odd, 𝑁 is even and the other is
when 𝑀 and 𝑁 are both odd. ■
𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦 3: The self differences set is contained in the

cross differences set, i.e. (�̃�−
𝑠 ∪ �̃�𝑠) ⊆ (�̃�−

𝑐 ∪ �̃�𝑐).
𝑃𝑟𝑜𝑜𝑓 : Because the two subarrays 𝑀𝑛,𝑁𝑚 are set to
share the reference sensor at the zero-th position, the self
differences can be regarded as the cross differences between
every sensor of one subarray and the reference sensor of the
other subarray. Thus, we obtain (�̃�−

𝑠 ∪ �̃�𝑠) ⊆ (�̃�−
𝑐 ∪ �̃�𝑐). ■

According to the above three properties, we can draw a
conclusion that, for a pair of co-prime subarrays with 𝑀
and 𝑁 sensors, compared to reconstructing a subarray with
2𝑁 − 1 sensors in [9], we are able to get a reduction of
sensors with increased degrees of design freedom using the
CARS structure.

IV. NUMERICAL RESULTS

In this section, the performance of the proposed CARS
structure is investigated for narrowband DoA estimation
through a pair of co-prime linear arrays. All the experiments
are based on simulated data, including ten stationary sources
with the DoA profiles of 𝜃1 = −0.1, 𝜃2 = −0.08, 𝜃3 =
−0.06, 𝜃4 = −0.04, 𝜃5 = −0.02, 𝜃6 = 0, 𝜃7 = 0.02, 𝜃8 =
0.04, 𝜃9 = 0.06, 𝜃10 = 0.08. The level of noise in terms
of Signal to Noise Ratio (SNR) is 5 dB and the number of
snapshots 𝐾 is 800. 𝑀 is chosen to be 12 and 𝑁 is 11,
which means, for the co-prime array configuration in [9],
the total number of sensors is 𝑀 + 2𝑁 − 1 = 33. For
the proposed CARS structure, the total number of sensors
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Fig. 3. The values of weight function 𝑤(𝑙𝑝) given in co-prime structure in
[9], as well as the maximum contiguous segments 𝕌.
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Fig. 4. The values of weight function 𝑤(𝑙𝑝) given in the proposed CARS
structure, as well as the maximum contiguous segments 𝕌.

is 𝑀 + ⌈3𝑁/2⌉ = 29, where the first subarray has 𝑀 = 12
senosrs and the second subarray has ⌈3𝑁/2⌉ = 17 sensors.
Both subarrays share the zero-th position as the reference
point. The DoAs are estimated from the measurement vectors
and the MUSIC algorithm introduced in Section II is used.

The associated MUSIC spectra 𝑃 (𝜃) and root-mean-
squared error (RMSE), are performed, where the RMSE
(Error) is defined as

𝐸𝑟𝑟𝑜𝑟 =

√√√⎷ 1

𝐷

𝐷∑
𝑖=1

(
ˆ̃
𝜃𝑖 − 𝜃𝑖)2 (25)

where ˆ̃
𝜃𝑖 denotes the estimated normalized DoA of the 𝑖-th

source signal, according to the root MUSIC algorithm, and
𝜃𝑖 is the designed normalized DoA.

In Figure 3 and Figure 4, we show the values of the
weight functions and the maximum contiguous segments in
𝕃𝑝, which consists of the pair of co-prime arrays. For the
co-prime array configuration in [9], there are 33 sensors in
total and the number of uniform DoF is 285 (the sensor in
coarray locates continuously from -142 to 142). While in
the proposed CARS structure, there are 29 sensors which is
less than 33, and a total of 299 uniform DoF are achieved
(coarray locations are continuously from -149 to 149). We
also found that for the proposed CARS structure, the values
of weight function decrease and are more evenly distributed.
Decreasing these weights reduces the number of sensor pairs
that have significant mutual coupling. Less mutual coupling
implies the mutual coupling matrix is closer to the identity
matrix, which makes the RMSE likely to decrease.

In Figure 5, a comparison among CARS, the original co-
prime construction in [9] and the center symmetric structure
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Fig. 5. Number of sensors vs uniform DoF for CARS, Original coprime
construction [9] and center symmetric structure [11].
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Fig. 6. The associated MUSIC spectra 𝑃 (𝜃) in co-prime structure in [9]
for the DoAs estimation.
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Fig. 7. The associated MUSIC spectra 𝑃 (𝜃) in the proposed CARS structure
for the DoAs estimation.

in [11] is showed, considering achieved uniform DoF when
using 21, 27, 33, 39, 45, 51, 57, 63, 69, 75 sensors. It is
obviously when using same number of sensors, the proposed
CARS can achieve most number of uniform DoF.

In Figure 6 and Figure 7, the associated MUSIC spectra
𝑃 (𝜃) are illustrated and the RMSEs are calculated. We found
that the proposed CARS structure gives good DoA estimate
and offers lower RMSE than the co-prime configuration in
[9]. It can be concluded that the proposed CARS co-prime
structure can achieve higher uniform DoF and smaller weight
functions, which help decrease the RMSE.

V. CONCLUSION

A new structure of co-prime arrays with reduced sensors
(CARS) has been presented to exploit the coarray distribution
for source localisation. The structure contains a pair of
co-prime subarrays, where the first array is shifted until
symmetrical to the center (reference sensor) and the number
of sensors in the second array is set according to the odd and
even of the co-prime number pair. Both subarrays share the
reference sensor at the zero-th position. This new co-prime
array structure achieves more uniform DoF than previous
work with a reduction in the number of physical sensors. The

DoA estimation results by the MUSIC algorithm evaluated
for multiple sources with noise show good performance of
the proposed structure. For the future work, we will present
other properties of the generalized CARS structure.
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