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Abstract—In this paper we deal with the problem of efficiently
and accurately reconstructing a complete graph signal from
partially observed noisy measurements. Given a graph structure,
we propose a solution based on convex optimization techniques to
partition the nodes of the graph into subsets such that sampling a
graph signal from any of these subsets provides an accurate, low
mean squared error for example, reconstruction of the original
complete graph signal. We show how the proposed sampling set
construction approach relates to optimal experimental design,
sensor management, positioning and selection problems and
provide numerical simulation results on synthetic and real-world
graphs.

Index Terms—graph signal processing, sampling on graphs,
sensor management, convex optimization, binary optimization.

I. INTRODUCTION

Modern signal processing has extended the notion of time
varying signals to also cover signals on irregular domains like
graphs [1]. Graphs naturally model a large number of very
diverse real world applications such as transport, energy, neu-
ral, social and sensor networks [2]. By successfully combining
ideas from algebraic and spectral graph theory together with
applied computational harmonic analysis, these structures can
be studied and their behavior analyzed and controlled.

Given a graph we consider that each node is capable of
performing a measurement or sample in time (for example, in
a sensor network each node could measure some environment
characteristic such as temperature). We call this collection
of samples a graph signal. The key idea of graph signal
processing is to take into account the additional information
of the structure (geometry) of the graph when processing
signals originating from its nodes. For instance, in a weighted
graph, the weights of the edges between two nodes describe in
some sense (that is defined in and dependent on the concrete
application) the “connection” or “correlation” between these
nodes. Therefore, this information can be exploited when
processing a graph signal. We show in Fig. 1 a few examples
of synthetic and real-world graphs.

Just as sampling theory plays a crucial role in classic
signal processing (when dealing with time-varying signals)
by providing a connection between the analog and digital
domains, the same concepts can be extended to graph signals
[3]. There the problem becomes one of reconstructing a full
graph signal from only a subset of node values given that we
have some information about the graph and its structure. In this
paper we describe and use the previously introduced concept
of bandlimited signals over the graph, which is a formalization

of the smoothness assumption of graph signals using the graph
Fourier transform, and we discuss the reconstruction of graph
signals from noisy measurements [5].

In this paper we deal with the following question: given
a graph structure, what is the best way to select a subset of
the nodes where we perform noisy measurements such that
we can estimate the full graph signal (the measurements in
all the nodes of the graph) with high accuracy, on average.
In this paper we propose a selection/partitioning algorithm to
construct subsets of nodes such that estimation of the full
graph signal is performed with similar accuracy across all
partitions. This approach is particularly useful in practical
scenarios when the graph cannot be queried completely or
it is resource intensive to do so. Also, previous sampling set
construction methods (like for example the recently greedy
method introduced in [5] or the one in [6]) do not allow us
to construct partitions of the node set (or to add some other
application dependent constraints), they just select a subset of
nodes for best performance. From this perspective, this work
follows the line of work started in [13], [14] that deals with
sensor scheduling problems under energy and time constraints.

We test our proposed method on both synthetic and real-
world graphs. We then finally discuss connections between
this work and experimental design [7], [8], [9] and sensor
management problems [10] where selection/scheduling/parti-
tioning solutions have been proposed and analyzed in the past
[11]–[14] with some also focusing on resource management
[15], [16], [17].

II. BRIEF BACKGROUND ON GRAPH SIGNAL PROCESSING

First, we introduce some notation, which is consistent to
the one in [5]. Bold lowercase letters define vectors such as
f ∈ ℝ

𝑚, uppercase letters define matrices such as L ∈ ℝ
𝑚×𝑚

and calligraphic letters such as 𝒮 denote sets where ∣𝒮∣ defines
the size of the set. It is convenient to be able to talk about
subsets of vectors and matrices and therefore we introduce the
notation f𝒮 ∈ ℝ

∣𝑆∣ where 𝒮 is a set containing the indices of
the vector f that are kept while U𝒮ℛ ∈ ℝ

∣𝒮∣×∣ℛ∣ defines a
sub-matrix of U where only the rows indexed in the set 𝒮
and the columns indexed in the set ℛ are kept.

We call the graph 𝐺 = (𝒱, ℰ) a collection of nodes given
by the set 𝒱 = {1, . . . ,𝑚} and connected by links indexed in
the set ℰ = {𝑤𝑖𝑗}∀𝑖,𝑗∈𝒱,𝑖 ∕=𝑗 where each 𝑤𝑖𝑗 ∈ ℝ+ denotes the
weight of the link between node 𝑖 and 𝑗 – with the associated
symmetric (because we assume 𝐺 is an undirected graph)
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Figure 1: Examples of graph structures: a sensor network
(upper left), a community graph (upper right) and a spherical-
shaped graph (lower left) all with 100 nodes and the Minnesota
road network with 2642 nodes (lower right). The synthetic
examples are generated by the GSPBOX toolbox [4].

adjacency matrix W ∈ ℝ
𝑚×𝑚. We also introduce the degree

matrix D = diag(𝑑1, 𝑑2, . . . , 𝑑𝑚), where we have denoted the
degree of node 𝑖 as 𝑑𝑖 =

∑
𝑗 𝑤𝑖𝑗 , and the real symmetric

𝑚×𝑚 positive semidefinite Laplacian matrix

L := D−W = UΛU𝑇 , (1)

where the second equality highlights its eigenvalues decom-
position [18, Chapter 4], with an orthonormal U (we also
call U𝑇 the graph Fourier transform) and the diagonal Λ
containing the positive eigenvalues 𝜆𝑘, 𝑘 = 1, . . . ,𝑚, in
ascending order, i.e., 0 ≤ 𝜆1 ≤ 𝜆2 ≤ ⋅ ⋅ ⋅ ≤ 𝜆𝑚. Operators
such as the Laplacian L measure of level of smoothness in the
graph and describe some of its properties.

A graph signal is a vector f ∈ ℝ
𝑚 defined over all the

𝑚 nodes of the graph 𝐺, i.e., each entry is a graph function
𝑓𝑖 : 𝒱 → ℝ defined with a scalar real value on each node of
the graph. We call f̃ = U𝑇 f the graph Fourier transform of
a signal f . We say a signal f is 𝜔−bandlimited if 𝑓𝑖 = 0 for
all 𝜆𝑖 > 𝜔, i.e., it is supported only on the eigenvectors of L
whose associated eigenvalues are strictly smaller than 𝜔, i.e.,
there is a number 𝑟 ≤ 𝑚 such that

f =

𝑟∑
𝑖=1

𝑓𝑖u𝑖 = U𝒱ℛf̃ℛ, (2)

where U =
[
u1,u2, . . . ,u𝑚

] ∈ ℝ
𝑚×𝑚, ℛ ∈ {1, . . . , 𝑟} and

therefore U𝒱ℛ ∈ ℝ
𝑚×𝑟 represents the first 𝑟 columns of U.

Consider now the following problem: we are given a graph
𝐺 with Laplacian L = UΛU𝑇 and the noisy measurements
y𝒮 = f𝒮 + n,y𝒮 ∈ ℝ

∣𝒮∣, from a subset 𝒮 of the nodes of 𝐺
and we are asked to estimate the graph signal in all the other
nodes of the graph. We have denoted here the noise vector
n ∈ ℝ

∣𝒮∣. It is known that for consistent reconstruction [19]

we follow

f̂ =U𝒱ℛ(U𝑇
𝒮ℛU𝒮ℛ)−1U𝑇

𝒮ℛy𝒮
=U𝒱ℛ(U𝑇

𝒮ℛU𝒮ℛ)−1U𝑇
𝒮ℛf𝒮 . . .

+U𝒱ℛ(U𝑇
𝒮ℛU𝒮ℛ)−1U𝑇

𝒮ℛn.

(3)

The reconstruction error is given by e = f̂ − f =
U𝒱ℛ(U𝑇

𝒮ℛU𝒮ℛ)−1U𝑇
𝒮ℛn and we assume that n is a Gaus-

sian i.i.d. vector with zero mean and identity covariance. Then
the covariance matrix of e is given by

𝔼[ee𝑇 ] = U𝒱ℛ(U𝑇
𝒮ℛU𝒮ℛ)−1U𝑇

𝒱ℛ. (4)

With this definition, and assuming that the columns of U𝒱ℛ
are orthogonal (as it is the case with any symmetric Laplacian
matrix L), in the spirit of optimal experimental design, we can
quantify in several ways the reconstruction error in (3):

1) A-optimality, mean-squared error (MSE):

MSE(U𝒮ℛ) = tr((U𝑇
𝒮ℛU𝒮ℛ)−1). (5)

2) E-optimality, worst-case error variance (WCE):

WCE(U𝒮ℛ) = 𝜆max((U
𝑇
𝒮ℛU𝒮ℛ)−1). (6)

3) D-optimality, volume of the confidence ellipsoid (VCE):

VCE(U𝒮ℛ) = log det(U𝑇
𝒮ℛU𝒮ℛ). (7)

We are interested in minimizing the MSE and WCE or
maximizing the VCE in order to obtain accurate reconstructed
graph signals f̂ in the presence of noise n. We do this over
the available degrees of freedom: the choice of the set 𝒮 (the
nodes to be selected from the graph 𝐺) which is up to us.
Our goal is to partition the full set of nodes 𝒱 into 𝑃 ∈ ℕ

∗

(where this value is given) subsets such that each one of these
achieves low MSE and WCE or high VCE. This opens the
possibility of operating only in the subsets, sequentially, such
that full graph signals are reconstructed with high accuracy,
on average, with less effort.

III. THE PROPOSED NODE PARTITIONING METHOD

For the clarity of exposition, we focus our development
in this section on the MSE criterion (5) (but the algorithm
presented here extends naturally to the WCE and VCE). We
begin by noting that

U𝑇
𝒮ℛU𝒮ℛ = U𝑇

ℛdiag(z)Uℛ ∈ ℝ
∣ℛ∣×∣ℛ∣, (9)

where z ∈ {0, 1}𝑚 is a binary vector such that 𝑧𝑖 = 1 when
𝑖 ∈ 𝒮 and 𝑧𝑖 = 0 otherwise (when 𝑖 /∈ 𝒮).

Given a graph with 𝑚 nodes and a fixed number of partitions
𝑃 we define the binary scheduling table

Z =
[
z1 z2 . . . z𝑃

] ∈ {0, 1}𝑚×𝑃 , (10)

and we denote the scheduler for partition 𝑝 by z𝑝 ∈ {0, 1}𝑚,
i.e., the columns of Z, we denote 𝑧𝑖𝑗 the (𝑖, 𝑗)th entry of Z
and we denote 𝑧𝑖 the entries of z𝑝. We interpret 𝑧𝑖𝑗 = 1 as
activating (or performing a measurement) in partition 𝑗 at node
𝑖. Also, since we are dealing with a partitioning problem, the
scheduling problem is constrained to have a single value “one”



Algorithm 1 – Node partitioning by ℓ1/ℓ∞ minimization.
Input: The graph sensing matrix Uℛ of the network with 𝑚
sensors, the total number of partitions 𝑃 and the regularization
parameter 𝜆 > 0.
Output: The scheduling table Z ∈ {0, 1}𝑚×𝑃 for the node
activations for each partition such that the signal recovery
performance is similar across the 𝑃 partitions.

Initialization:
1. Set initial weights w𝑝 = 1𝑚×1 and the initial all-zero

solution z𝑝 = 0𝑚×1 for 𝑝 = 1, . . . , 𝑃 , i.e., Z = 0𝑚×𝑃 .
2. Initialize sets 𝒩 = ∅ indexing nodes that are not

selected and 𝒦 = ∅ indexing nodes that are selected.

Iterations:
1. Set Z(prev) ← Z.
2. Update weights according to 𝑤𝑖𝑗 = (𝑧(prev)

𝑖𝑗 + 𝜖)−1.
3. Solve (12) with current weights to obtain the new

estimate Z via a standard solver like [22].
4. Update the sets 𝒩 = {(𝑖, 𝑗) ∣ 𝑧𝑖𝑗 ≤ 𝜖} and 𝒦 =
{(𝑖, 𝑗) ∣ 𝑧𝑖𝑗 ≥ 1−𝜖} while maintaining the row and column
constraints in Z (only one activation per row, minimum ∣ℛ∣
activations per column).

5. If the iterative process has converged, i.e., ∥Z −
Z(prev)∥2𝐹 ≤ 𝜖, then we update

𝒦 ← 𝒦 ∪ {argmax
(𝑖,𝑗)

𝑧𝑖𝑗 , (𝑖, 𝑗) /∈ 𝒦}. (8)

6. If the solution for 𝒦 and 𝒩 is binary, i.e., ∣𝒩 ∣+∣𝒦∣ =
𝑚𝑃 , then stop otherwise go to step 1 of the iterative process.

in each row of Z and since we have to ensure full rank (in
order to have invertibility in (4)) we need to ensure that for
each partition 𝑝 at least ∣ℛ∣ nodes are selected.

To partition the nodes such that the estimation accuracy of
the full graph signal is high over all 𝑃 partitions we would
like to solve the following NP-hard mixed-integer semidefinite
optimization problem

minimize
𝑦, Z∈{0,1}𝑚×𝑃

𝑦

subject to
𝑃∑

𝑝=1

z𝑝 = 1𝑚×1

11×𝑚z𝑝 ≥ ∣ℛ∣, 𝑝 = 1, . . . , 𝑃

tr((U𝑇
ℛdiag(z𝑝)Uℛ)−1) ≤ 𝑦, 𝑝 = 1, . . . , 𝑃,

(11)
The first constraint ensures the partitioning of the nodes, i.e.,
each node is activated in only one of the 𝑃 partitions, while
the second constraint explicitly ensures that at each partition
𝑝 the matrix U𝑇

ℛdiag(z𝑝)Uℛ is full rank, i.e., at least ∣ℛ∣
nodes are selected. The third constraint, which in this case
is for the MSE, is in the style of ℓ∞ norm minimization
(using the slack variable 𝑦 ∈ ℝ+), i.e., we want to minimize
the worst case MSE over all 𝑃 partitions. We thus ensure
that across all partitions the MSE reconstruction performance

Figure 2: Result of applying Algorithm 1 for a network with
𝑚 = 100 sensors and with 𝑃 = 3 partitions (the three
partitions are shown in red squares, green circles and blue
stars, respectively).

is similar on average. Extensions to the WCE (6) and VCE
(7) are trivial and immediate since they are also convex
constraints, and are therefore omitted for brevity. Notice that
this approach does not deal explicitly with how many nodes are
activated in each partition; we rather impose the reconstruction
accuracy constraint and let the optimization process establish
the number of nodes to be activated.

We relax the binary constraints and propose to solve the
following tractable, convex optimization [20] problem

minimize
𝑦, Z∈[0,1]𝑚×𝑃

𝑦 + 𝜆
𝑃∑

𝑝=1

w𝑇
𝑝 z𝑡

subject to
𝑃∑

𝑝=1

z𝑝 = 1𝑚×1

11×𝑚z𝑝 ≥ ∣ℛ∣, 𝑝 = 1, . . . , 𝑃

tr((U𝑇
ℛdiag(z𝑝)Uℛ)−1) ≤ 𝑦, 𝑝 = 1, . . . , 𝑃,

(12)
where 𝜆 is the given regularization parameter, the weight
vectors {w𝑝}𝑃𝑝=1 ∈ ℝ

𝑚 are given as 𝑤𝑖𝑗 = (𝑧𝑖𝑗 + 𝜖)−1, 𝑖 =
1, . . . ,𝑚, 𝑗 = 1, . . . , 𝑃 in the style of the iterative reweighted
ℓ1 approach [21]. We use this optimization problem in the
proposed Algorithm 1 where we detail the procedure of
allocating the entries in Z to binary values.

In Algorithm 1, we build the binary solution by keeping
track of two sets: 𝒦 (containing the “one” entries) and 𝒩
(containing the “zero” entries). We build up these sets itera-
tively by allowing the ℓ1 optimization procedure to push the
entries to binary values. If the procedure converges while the
solution is still not binary we set to “one” the largest entry in
Z that does not yet belong to 𝒦 and then proceed with the
iterative process. In this manner we ensure that most of the
entries in Z are allocated to the set 𝒦 or 𝒩 by the optimization
procedure and not by a thresholding operation.

From a computational perspective, Algorithm 1 is efficient.
At each step, once an entry has been allocated to either the
set 𝒦 or 𝒩 it is removed from the optimization problem.
Therefore, as the algorithm proceeds, the dimension of the



Figure 3: Analogous simulation scenario as in Fig. 3 for a
community network with 𝑚 = 100 nodes and 5 groups.

Figure 4: The result of applying Algorithm 1 on the Minnesota
road map graph with 𝑃 = 3 partitions.

optimization problem that is solved at Step 3 decreases sig-
nificantly (to the extent that the last iterations involve only a
few optimization variables).

IV. RESULTS

In this section we test our proposed approach to partition
graph nodes such that signal can be reconstructed from a sub-
set of noisy measurement in a few nodes with high accuracy.

In Fig. 2 and 3 we show partitioning results on synthetic
sensor and community graphs of 𝑚 = 100 elements each.
In each case we construct the Laplacian matrices L as in (1)
and we keep only the low-pass components of the graph: the
eigenvectors associated with the ten smallest eigenvalues of
L, i.e., U𝒱ℛ ∈ ℝ

100×10 with ∣ℛ∣ = 10. We always partition
the graphs into 𝑃 = 3 groups (for ease of exposition in
the figures). In Fig. 2 notice that the sensors are partitioned
such that each group closely covers all regions of the graph
while in Fig. 3 each one of the five communities themselves
have members in all the partitions. The observations are
intuitive and they suggests that for a specific type of graph
some preprocessing (like clustering) that takes into account its
structure could help the partitioning procedure produce better
results (or at least perform the partitioning more efficiently by
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Figure 5: The result of applying Algorithm 1 on the Minnesota
road map graph with varying partition size 𝑃 . We show the
best case performance (query the full network, no partitioning)
for the MSE, which is at 264. These results show that the
performance degrades as the number of partitions increases.

1 2 3 4 5
1000

2000

3000

4000

5000

6000

Number of partitions P

E
ne

rg
y

Figure 6: Trade-off between the number of partitions 𝑃 (when
𝑃 = 1 no partitioning takes place) and the energy consumption
for acquiring the samples of the Minnesota graph network
according to the energy cost (13).

splitting the overall problem is smaller sub-problems).
In the next experimental setup we use a real-world graph,

the Minnesota road map graph1. The graph has 𝑚 = 2642
nodes and we keep 10% of the low-pass components, i.e.,
∣ℛ∣ = 264. In Fig. 4 we show the result of partitioning the
graph in 𝑃 = 3 groups while in Fig. 5 we show how the
MSE scales with the size of the partition 𝑃 . Better results
are obtained for smaller 𝑃 , as expected since more nodes are
activated per each partition. The best MSE is obtained when
𝒮 = 𝒱 (there is only one partition) and we show in the figure
this best case value of MSE(U𝒱𝒮) = ∣ℛ∣ = 264. Comparisons
with other methods, like the greedy sampling set selection
proposed in [5] is difficult since these are selection procedures
that cannot be easily extended to partitioning tasks.

The benefits of partitioning for sampling any graph are clear
when we also consider an energy model attached to the model.
For example, consider that all samples are collected in a node
of the graph (which we call in this paper the central node)
where the data are processed. For example, let us consider
again the previously mentioned Minnesota road graph where
we now pick a central node whose coordinates are c ∈ ℝ

2.
The other nodes of the graph are positioned at coordinates
{v𝑖}2641𝑖=1 ∈ ℝ

2 and their cost of transmitting the measurements
to the central node is

𝑠𝑖 = 𝑂(∥c− v𝑖∥2), (13)

i.e., proportional to the euclidean distance. We show in Fig.
6 and 7 how this cost depends on the partitioning achieved,

1Part of he MatlabBGL Matlab library, by D. Gleich, available at
http://www.cs.purdue.edu/homes/dgleich/packages/matlab bgl/index.html
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Figure 7: Trade-off between MSE and energy consumption in
an simulation scenario analogous to Fig. 6.

as a function of the MSE and the number of partitions 𝑃
respectively. We observe that the partitioning procedure brings
high energy gains at the cost of slight increases in MSE,
especially for low 𝑃 , and therefore balances the cost of using
the network with the accuracy of its measurements.

In all runs of Algorithm 1 we set the regularization param-
eter 𝜆 = 1 and the internal parameter 𝜖 = 10−5.

From an analysis perspective, some theoretical results are
possible in our partition application. Notice that given an
orthonormal U then any subset U𝒱ℛ has orthonormal columns
and therefore it is a tight frame, i.e., U𝑇

𝒱ℛU𝒱ℛ = I. The
problem of node selection (or partitioning) on the graph is
equivalent to a sensor placement problem in the case where
the sensor measurement matrix is tight. In this case, theoretical
analysis based on the solution to the Kadison-Singer problem
[23], as explained in detail in [14], shows that

MSE(U𝒮ℛ) ≥
{
∣ℛ∣𝑃 2, if 𝑃 ≪ 𝑚∣ℛ∣−1

𝑚
(1+

√
𝑐1)4

𝑃, if 𝑃 ≈ 𝑚∣ℛ∣−1,
(14)

for a constant 𝑐1 that depends on the entries in U𝒱ℛ. The
result puts a limit on how good the MSE can be depending
on the number of partitions: more partitions lead to worse
accuracy per partition (fewer nodes are selected, of course).
If we are in a regime when 𝑃 ≪ 𝑚∣ℛ∣−1 then each partition
activates a large number of nodes, i.e., significantly larger than
∣ℛ∣, and then even a random selection of the nodes performs
very well, see [14, Result 4]. Otherwise, if 𝑃 ≈ 𝑚∣ℛ∣−1

then each partition contains a number of nodes close to ∣ℛ∣
and therefore invertibility and rank issues might occur when
constructing Uℛdiag(z𝑝)Uℛ leading to large values of the
MSE. This is the case where an approach like Algorithm 1
can bring the highest benefit as compared to a more simplistic
partitioning method.

V. CONCLUSIONS

In this paper we have presented a graph sampling algorithm
based on an convex programming approach in the spirit of
ℓ1/ℓ∞ optimization to partition the nodes of a graph in
such a way as to guarantee that all subsets of the partition
perform similarly in graph signal reconstruction operations.
The method is numerically efficient and easily applicable
to any numerical scenarios by using off-the-shelf standard
optimization libraries. Furthermore, since it is based on a
convex optimization formulation, extra constraints can be
accommodated depending on the application at hand and its
real-world constraints.
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