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Abstract—In-shore and off-shore wind farms are nowadays
representing strategic assets for the generation of clean energy.
However their presence interferes with existing surveillance
systems, such as primary radar systems. In order to achieve
painless coexistence of radar and wind farms systems, solutions
can be explored from both the renewable energy and radar
communities. In particular, this paper deals with the latter aspect,
proposing signal processing solutions able to allow a radar system
to mitigate the deleterious effects of a wind farm within its
surveillance area. This paper proposes a joint radar waveform
and filter design aimed to optimize the Signal plus Interference
to Noise Power Ratio (SINR) in a multi-static radar scenario.
The analysis is performed on simulated data and shows that the
proposed method is able to reduce the effect of wind farms.

Keywords—Wind farms, optimization, SINR, multi-static radars,
primary radars.

I. INTRODUCTION

The capability of radar systems to adapt to the changing sur-
rounding environment has become an important requirement
in the modern radar sensing scenarios. More often, political
and economical factors introduce novel elements on the radar
chessboard that can affect the effectiveness of the radar to
accomplish its tasks. The human intervention is often chang-
ing the characteristics of the radar scenario, adding electro-
magnetic interferers (novel communication infrastructure) and
non-stationary clutter sources (wind farms). In particular, the
presence of wind farms within the surveillance area of a radar
system affects dramatically the target detection capabilities [1].
The large radar cross-section of wind turbines in conjunction
with the time-varying Doppler modulation injected on the radar
returns decreases the capability of a radar to detect moving
targets, such as aircraft flying over a land or an off-shore wind
farm.

The effects of the wind farms on radar systems have been
widely modeled and studied, including those on more advanced
radar modes [1]–[3]. The electromagnetic interference (EMI)
of wind turbines in polarimetric radar systems has been studied
in [1], identifying some discriminating features that can be
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used in order to distinguish wind turbines from actual targets.
In [2] the effect of the wind turbines on Synthetic Aperture
Radar (SAR) images has been modeled and potential issues
on the final product quality and target detection have been
discussed. The use of spatial and frequency diversities is
suggested in [3] with an analysis on the radar returns from
S and X band radar data in mono and bistatic configurations.

Signal processing based solutions to the problem of EMI
from wind turbines have been investigated in the literature [4]–
[6]. In [4] waveform design within a Coherent Pulse integration
Interval (CPI) is proposed to resolve ambiguous ranges and
filter out wind turbines’ returns. The proposed solution resides
in randomizing parameters in the transmitted train of pulses
in order to design filters able to reject both clutter and echoes
from wind turbines. A seasonal moving average filter is used
in [5] in order to exploit the cyclostationary properties of the
wind turbine returns to filter out the undesired echoes for
the specific case of weather radar applications. This approach
showed good capabilities achieving up to 20 dBs of wind
turbine clutter rejection. The specific case of wind turbines
clutter mitigation in Air Traffic Control radars is addressed
in [6], with a solution based on the GAPES (Gapped-data
Amplitude and Phase Estimation) algorithm to fill gaps in data
measurements and the computation of a correction function
from time-frequency distributions in order to remove the wind
turbines’ effect.

In this paper we propose a novel strategy for the joint design
of radar waveform and bank of filters in order to maximize
the detection probability in a distributed radar network. In
particular, we extend the approach proposed in [7] to obtain
the optimal design to mitigate the effect of a wind farm on
a multi-static radar system. The basic idea of the proposed
approach is to optimize the worst case SINR by reformulat-
ing the original non-convex max-min optimization problem.
The proposed algorithm is an optimization procedure that
monotonically improves the worst-case SINR. A convex and
a generalized fractional programming problem are involved in
each iteration; the latter is solved through the Dinkelbach’s
procedure with polynomial complexity. The remainder of the
paper is organized as follows. Section II derives the signal
model for the analyzed multi-static radar scenario. Section
III formulates the optimization problem and the optimization
procedure. Results on simulated data are discussed in Section
IV while Section V concludes the paper.

II. SIGNAL MODEL

A multi-static radar system with one transmitter and Q
receivers is considered, which operates in proximity of a wind
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farm. The system, and in particular the receivers, are designed
to process the signal received from each multi-static radar cell,
and then send the result to a fusion centre for target detection.
The K radar cells, of dimensions driven by the resolution of
the system itself, are defined through an absolute reference
system, that is not linked to any transmitter-receiver pair.
Moreover, both the K cells that form the surveillance volume,
and the wind farm, are assumed to be within the unambiguous

range of the system1. Let2 s = [s(1), s(2), · · · , s(N)]
T
∈ CN

denote the slow-time code used by the transmitter to form a
coherent burst of N slow-time coded pulses, and v(q,k) ∈ CN

be the vector containing the observations from the k-th radar
cell at the q-th receiver, with k = 1, . . . ,K and q = 1, . . . , Q.
Furthermore, let us define the generic steering vector p (x) as:

p (x) =
[

1, e−j2πx, . . . , e−j2π(N−1)x
]T

∈ C
N (1)

Then, the vector v(q,k) can be expressed as:

v(q,k) = t(q,k) + d(q,k) + n(q) (2)

where each of the three contributions is a circular symmetric
random vector. Description and statistical characterisation of

t(q,k), d(q,k) and n(q) are reported below.
The vector t(q,k) represents the return from the target, equal

to:

t(q,k) = α(q,k)
(

s⊙ p
(

µ(q)
))

(3)

where µ(q) = Tsf
(q)
t is the unknown normalised target’s

Doppler frequency, with Ts and f
(q)
t the Pulse Repetition Inter-

val (PRI) and the actual target Doppler frequency, respectively,

while var
(

α(q,k)
)

= E

[

∣

∣α(q,k)
∣

∣

2
]

is the power of the return,

that accounts for channel propagation and scattering effects
from the target.

The vector d(q,k) contains the filtered signal-dependent
interfering samples, due to clutter (returns from land, rain,
etc.) and to the rotation of the wind turbine’s blades, which is

1This assumption will be relaxed in future developments.
2We adopt the notation of using boldface for column vectors a (lower

case), and matrices A (upper case). The transpose, the conjugate, and the

conjugate transpose operators are denoted by the symbols (·)T , (·)∗ and

(·)† respectively. diag (a) indicates the diagonal matrix whose i-th diagonal
element is the i-th entry of a. I and 0 denote respectively the identity matrix
and the matrix with zero entries (their size is determined from the context).
CN and HN are respectively the sets of N -dimensional vectors of complex
numbers and N × N Hermitian matrices. The curled inequality symbol �
(and its strict form ≻) is used to denote generalized matrix inequality: for any
A ∈ HN , A � 0 means that A is a positive semidefinite matrix (A ≻ 0

for positive definiteness). The Euclidean norm of the vector x is denoted by
‖x‖. The letter j represents the imaginary unit (i.e. j =

√
−1), while the

letter i often serves as index in this paper. For any complex number x, we use
ℜ (x), |x|, and arg (x) to denote respectively the real part, the modulus, and
the argument of x. E [·] denotes the statistical expectation. Finally, ⊙ denotes
the Hadamard product and for any optimization problem P , v(P) represents
its optimal value.

located in the k-th radar cell3. It is expressed as:

d(q,k) =

L−1
∑

l=0

M−1
∑

m=0

β
(q,k)
m,l

(

s⊙ p
(

ν
(q,k)
m,l

))

+

NC
∑

k′=0

γ
(q,k)
k′ Jk′

(

s⊙ p
(

ξ
(q,k)
k′

))

(4)

As to the wind turbine contribution, M is the number
of uncorrelated point scatterers located on each of the L

blades of the wind turbine, and var
(

β
(q,k)
m,l

)

= E

[

∣

∣

∣
β
(q,k)
m,l

∣

∣

∣

2
]

and ν
(q,k)
m,l are the power and the normalised Doppler fre-

quency of the return from the (m, l)-th point scatterer,
with the latter being uniformly distributed in the range
[

ν
(q,k)
m,l − δ

(q,k)
m,l , ν

(q,k)
m,l + δ

(q,k)
m,l

]

4. Such a geometric formula-

tion of the return signal from the wind turbine’s blades,
despite being simplified, reasonably models the dynamic of the
problem. Moreover, possible mismatches, due to, for example,
vibrations of the mast, are taken into account in the definition
of the random interval of the normalised Doppler frequency

ν
(q,k)
m,l . Regarding the signal-dependent interference contribu-

tion, NC ≤ N−1 is the number of ambiguous range cells that

interfere with the one of interest. Moreover, var
(

γ
(q,k)
k′

)

=

E

[

∣

∣

∣
γ
(q,k)
k′

∣

∣

∣

2
]

and ξ
(q,k)
k′ are the power and the normalised

Doppler frequency of the clutter, respectively, with the latter

uniformly distributed in
[

ξ
(q,k)

k′ − ε
(q,k)
k′ , ξ

(q,k)

k′ + ε
(q,k)
k′

]

, while

Jk′ is the shift matrix defined as:

Jk′ (x, x′) =

{

1 x− x′ = k′

0 x− x′ 6= k′
(5)

The covariance matrix of d is equal to:

Γ
(q,k)

d
(s) = E

[

d(q,k)d(q,k)†
]

=

=

L−1
∑

l=0

M−1
∑

m=0

var
(

β
(q,k)
m,l

)

SΨ
(q,k)
m,l S†

+

NC
∑

k′=0

var
(

γ
(q,k)
k′

)

Jk′SΦ
(q,k)
k′ S†JT

k′

(6)

3Without loss of generality, it is supposed that at most one wind turbine
is located in the k-th radar cell. Moreover, assuming low range side lobes
of the employed waveform, the interference from neighbouring radar cells is
considered negligible.

4The expression of ν
(q,k)
m,l

, not reported in this paper for conciseness and left

for a later publication, depends on the structure of the wind turbine (number
and relative dimension of the blades w.r.t. the wavelength of the radar), its
rotation speed and its orientation w.r.t to both the transmitter and the q-th
receiver.



where S = diag {s},

Ψ
(q,k)
m,l (x, x′) =

=







1 x = x′

e−j2πν
(q,k)
m,l (x−x′) sin

[

2πδ
(q,k)
m,l (x−x′)

]

2π δ
(q,k)
m,l

(x−x′)
x 6= x′

(7)

and

Φ
(q,k)
k′ (x, x′) =

=







1 x = x′

e−j2πξ
(q,k)

k′ (x−x′) sin
[

2πε
(q,k)

k′ (x−x′)
]

2π ε
(q,k)

k′
(x−x′)

x 6= x′
(8)

The vector n(q) represents the filtered signal-independent

coloured noise, with Γ
(q)
n = E

[

n(q)n(q)†
]

≻ 0 so as

to account for both white internal noise and other signal-
independent interferences. In the next section the optimization
problem in this scenario will be formulated.

III. PROBLEM FORMULATION AND DESIGN ISSUES

The joint design of the radar code and the receive archi-
tecture optimizing the worst-case SINR over the unknown
target state is addressed forcing some practical constraints on
the shape of the transmit code. Specifically, the slow-time
received signals from a specific radar cell k, that is v(q,k) for
q = 1, . . . , Q, are processed through a specific bank of filters

wk,i =

[

w
(1)
k,i

†
, . . . ,w

(Q)
k,i

†
]†

(9)

where w
(q)
k,i ∈ CN , i ∈ Ak, and Ak is the set of velocity bins of

interest for the k-th cell, where each velocity bin corresponds

to a specific pull of Q values,
{

µ
(1)
i , . . . , µ

(Q)
i

}

. The SINR at

the k-th radar cell on the i-th branch can be written as:

SINRk,i =

Q
∑

q=1

var
(

α(q,k)
)

∣

∣

∣

∣

(

s⊙ p
(

µ
(q)
i

))†

w
(q)
k,i

∣

∣

∣

∣

2

w
†
k,iΣ

(k)

d
(s)wk,i +w

†
k,iΣnwk,i

(10)

where Σ
(k)

d
(s) and Σn are block diagonal matrices defined

as follows:

Σ
(k)

d
(s) = diag

{

Γ
(1,k)

d
(s) , . . . ,Γ

(Q,k)

d
(s)
}

(11)

Σn = diag
{

Γ
(1)
n , . . . ,Γ

(Q)
n

}

(12)

The numerator of (10) is the useful average energy at the
output of the i-th filter associated to the k-th radar cell of

the overall multi-static radar, while w
†
k,iΣ

(k)

d
(s)wk,i and

w
†
k,iΣnwk,i represent the clutter plus wind turbines and the

signal-independent disturbance energies, respectively, at the
output of the i-th filter associated to the k-th radar cell. Hence,

to guarantee target detectability regardless of its actual velocity
and location, the following figure of merit is assumed:

SINRB = min
k=1,...K, i∈Ak

SINRk,i (13)

namely the worst-case SINR at the output of the filter array,
corresponding to the minimum SINR among the available
branches, each tuned to a specific velocity.

Both an energy and a similarity constraint are forced on the
transmit sequence. The former rules the energy budget and is

given by ‖s‖
2
= 1; the latter controls some critical properties

of the probing signal [8] and is defined as:

‖s− s0‖
2
≤ τ (14)

where the parameter 0 ≤ τ ≤ 2 rules the size of the trust
hypervolume and s0 is a prefixed code. Based on above
guidelines, the joint design of the radar code and the receive
architecture can be formulated as the following constrained
max-min optimization problem

P











max
s,{wk,i}

f (s,w1,1, . . . ,wK,NK
)

s.t. ‖s‖
2
= 1

‖s− s0‖
2
≤ τ

(15)

where Nk = |Ak|, k = 1, . . . ,K and

f (s,w1,1, . . . ,wK,NK
) = min

k=1,...K, i∈Ak

SINRk,i (16)

Problem P is a non-convex optimization problem (the objec-

tive function is a non-convex function and ‖s‖
2
= 1 defines a

non-convex set), and the solution techniques developed in [7],
[9] cannot be used to handle it. It is thus necessary to develop a
new optimization procedure to tackle this challenging problem.
As first step toward this goal, following the same line of
reasoning as in [7, Theorem 1], it can be shown that P , for
any 0 ≤ τ < 2, is equivalent to:

P1















max
s,{wk,i}

f (s,w1,1, . . . ,wK,NK
)

s.t. ‖s‖
2
≤ 1

ℜ
(

s
†
0 s
)

≥ τ1

(18)

where τ1 = 1 − τ
2 > 0. Observe that P1 is still a non-

convex optimization problem because the objective function
is a non-convex function. Nonetheless, differently from P , the
equivalent formulation shares a convex feasible set. To handle
P1 the optimization framework proposed in [10] is exploited,
where two variable blocks are considered. One is the transmit
signal, while the other is the set of all the receive filters. Hence,
the following optimization problems have to be alternatively
solved:

Ps
(n)















max
s

f1

(

s,w
(n−1)
1,1 , . . . ,w

(n−1)
K,NK

)

s.t. ‖s‖
2
≤ 1

ℜ
(

s
†
0 s
)

≥ τ1

and

Pw
(n)

{

max
{wk,i}

f
(

s(n),w1,1, . . . ,wK,NK

)



f1 (s,w1,1, . . . ,wK,NK
) = min

k=1,...K, i∈Ak

−E
(k,i)
s + 2ℜ

{

y
(k,i)
s s

}

w
†
k,iΣ

(k)

d
(s)wk,i +w

†
k,iΣnwk,i

(17)

where the function f1 (s,w1,1, . . . ,wK,NK
) is reported in (17)

and:

E
(k,i)
s =

Q
∑

q=1

var
(

α(q,k)
)

∣

∣

∣

∣

(

s⊙ p
(

µ
(q)
i

))†

w
(q)
k,i

∣

∣

∣

∣

2

y
(k,i)
s = s†

(

Q
∑

q=1

var
(

α(q,k)
)

A
(q)
k,i

)

A
(q)
k,i = diag

(

p
(

µ
(q)
i

)†
)

w
(q)
k,iw

(q)
k,idiag

(

p
(

µ
(q)
i

))

Problems Ps
(n) and Pw

(n) are solvable. Hence, it can be
shown that the devised algorithm monotonically converges to
the limit value associated with the employed starting point
ensuring the algorithm stability (in terms of convergence). As

to Pw
(n), a closed form optimal solution

(

w
(n)
1,1 , . . . ,w

(n)
K,NK

)

for any fixed s(n) can be obtained. For conciseness, the
demonstrations of these is kept for an extended publication.
However, it is worth mentioning that, for each velocity bin,
the optimisation procedure fundamentally picks up the best
receiver among the available ones, also lowering the compu-
tational complexity since there is no need of jointly process
the signals coming from the Q receivers. As to the solution of

Problem Ps
(n) we exploit5 some results from the Generalised

Fractional Programming (GFP) theory [11], [12], which are
summarized here in the form of a lemma.

Lemma 3.1: Let X ⊆ CN be a convex compact set,

{fi(x)}
I

i=1 be non-negative concave functions over X , and

{gi(x)}
I

i=1 positive convex functions over X . Hence, the GFP
problem

PGFP







max
x

min
i=1,...,I

fi(x)

gi(x)
s.t. x ∈ X

, (19)

is solvable and an optimal solution can be obtained through
Algorithm 16.

Algorithm 1 is characterized by a linear convergence rate
[11] and, in each iteration, only requires the solution of a con-
vex problem, which can be obtained in polynomial time using
many convex programming algorithms [13]. Additionally, the
objective function of PGFP monotonically converges to the
optimal value of PGFP and the exit condition Fλ = 0, in
practice, is replaced by Fλ ≤ ς , with ς a prescribed accuracy.

�

5Without loss of generality, some proper linear inequalities can be added

to Ps(n).
6It is worth pointing out that the convergence of Algorithm 1 to an optimal

solution of PGFP holds even under some milder technical conditions [11],
[12].

Algorithm 1 : Generalized Dinkelbach’s Algorithm

Input: X ⊆ CN , {fi(x)}
I

i=1, and {gi(x)}
I

i=1.
Output: A solution x⋆ to PGFP .

1: set n = 0, λn = 0.
2: do

3: find x⋆
n = argmax

x∈X

{

min
1≤i≤I

fi(x)− λngi(x)

}

;

4: let Fλ =

{

min
1≤i≤I

fi(x
⋆
n)− λngi(x

⋆
n)

}

;

5: n = n+ 1;

6: λn = min
1≤i≤I

fi(x
⋆
n−1)

gi(x⋆
n−1)

;

7: until Fλ = 0
8: output x⋆ = x⋆

n−1.

A. Transmit-Receive System Design: Optimization Procedure

In this subsection, the devised sequential optimization proce-
dure is summarized as Algorithm 2. To trigger the recursion,
an initial radar code s(0) from which obtaining the optimal

filter bank
(

w⋆
1,1

(0), . . . ,w⋆
K,NK

(0)
)

is required; a natural

choice is s(0) = s0.

Algorithm 2 : Algorithm for Transmit-Receive System Design

Input: var
(

α(q,k)
)

, var
(

β
(q,k)
m,l

)

, var
(

γ
(q,k)
k′

)

,

ν
(q,k)
m,l , δ

(q,k)
m,l , ξ

(q,k)

k′ , ε
(q,k)
k′ , Σn, µ

(q)
i , s0, τ .

Output: A solution
(

s⋆,w⋆
1,1, . . . ,w

⋆
K,NK

)

to P .

1: set n = 0 and s(n) = s0, and compute w⋆
k,i

(n) for
k = 1, . . . ,K , i = 1, . . . , NK through the closed-

form solution of problem Pw
(n), and SINR(n) =

f
(

s(n),w⋆
1,1

(n), . . . ,w⋆
K,NK

(n)
)

;

2: do

3: n = n+ 1;
4: solve problem Ps

(n) finding an optimal radar code

s⋆(n), through the use of Algorithm 1;

5: solve problem Pw
(n) finding an optimal receive filter

bank w⋆
k,i

(n).

6: let SINR(n) = f
(

s⋆(n),w⋆
1,1

(n), . . . ,w⋆
K,NK

(n)
)

;

7: until |SINR(n) − SINR(n−1)| ≤ ζ
8: output s⋆ = s⋆(n) and w⋆

k,i = w⋆
k,i

(n), k = 1, . . . ,K ,
i = 1, . . . , Nk.

IV. PERFORMANCE ANALYSIS

In order to assess the performance of the proposed frame-
work, a simple scenario is simulated and analysed. The surveil-



lance area is divided into 10 × 10 cells whose dimension is
100m× 100m, numbered from 1 to 100 along the rows from
the bottom-left corner (thus cell 1 coincides with the origin of
the reference system). Two sensors are located in cells 1 and
10, respectively, with the first one being transmitter/receiver,
while two wind turbines are located in 5 and 76. The first one
has a rotation speed of 0.24 Rounds per Second (RPS) and
faces south, while the second turbine turns at 0.20 RPS and
faces south-east. Furthermore, the turbines have L = 3 blades
of 45m each, discretised as M = 10 points scatterers, with

var
(

β
(q,k)
m,l

)

= 10/(L×M). Regarding the radar, it transmits

a sequence of N = 20 phase coded pulses in L-band with
PRI = 1/2ms. The reference code s0 for the similarity
constraint is a generalised Barker code, a constant modulus
sequence exhibiting good correlation properties. Finally, the
number of filters per receiver is 20.

A uniformly distributed clutter is assumed over the nor-

malised Doppler interval
[

ξ
(q,k)

k′ − ε
(q,k)
k′ , ξ

(q,k)

k′ + ε
(q,k)
k′

]

=

[−0.065, 0.065], with var
(

γ
(q,k)
k′

)

= 1000/ (NC + 1) and

NC = 1. As to the signal-independent disturbance, it is

assumed Γ
(q)
n = I . Finally, var

(

α(q,k)
)

= 10.
The convex optimization problems are solved via the CVX

toolbox. The exit condition in Algorithm 2 assumes ζ = 10−3,
whereas that in Algorithm 1 ς = 10−6.

In figure 1 the results of the simulation for two different
values of the similarity constraint τ are shown. In both the
cases, the optimisation procedure leads to an improvement of
the worst-case SINR, SINRB, of about 3.6 dB. As expected,
SINRB is slightly lower when the similarity constraint τ is
tighter, but also the convergence of the algorithm is faster.
In particular, for the case in which τ = 0.2 the maximum
SINRB is 9.28 dB in 113 iterations while when τ = 0.5 the
maximum SINRB is 9.36 dB in 139 iterations.

Fig. 1: Analysis results: SINRB monotonically increasing
property of the proposed method.

V. CONCLUSION

This paper proposed a joint radar waveform and filter
design aimed to optimize the SINR in a multi-static radar
scenario in the presence of wind turbine interference. The
proposed framework allows to jointly adjust the slow-time

radar waveform and the weights of the receiver filters. In
particular an iterative algorithm that monotonically improves
the worst case system SINR is developed. The computational
complexity of the proposed method is linear with the number
of outer iterations whereas at each iteration, it mainly requires
the implementation effort of the Dinkelbach’s procedure. The
performance assessed on simulated data showed that the pro-
posed method is effective in rejecting the interference from the
wind farms, with an improvement of the worst-case SINR of
more than 4 dB.
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