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Abstract 

Independent vector analysis (IVA) is a frequency domain 
blind source separation (FDBSS) technique that has proven 
efficient in separating independent speech signals from their 
convolutive mixtures. In particular, it addresses the 
problematic permutation problem by using a multivariate 
source prior. The multivariate source prior models statistical 
inter dependency across the frequency bins of each source and 
the performance of the method is dependent upon the choice 
of source prior. The online form of the IVA is suitable for 
practical real time systems. Previous online algorithms use a 
learning rate that does not introduce a robust way to control 
the learning as a function of the proximity to the target 
solution. In this work, we propose a new adaptive learning 
scheme to improve the convergence speed and steady state 
separation performance. The speech signals are modelled by 
two different source priors; a super-Gaussian distribution and 
a generalized Gaussian distribution. The experimental results 
confirm improved performance with real room impulse 
responses and real recorded speech signals.  

Index Terms -- Blind source separation, convolutive 
mixture, independent vector analysis, online, adaptive 
learning, room impulse responses 

I. INTRODUCTION 

BSS is generally a statistical signal processing approach to 
solve the cocktail party problem (CPP). CPP describes the 
problem of separating different sounds in a cocktail party 
environment [1]. BSS is concerned with extracting source 
signals from their observed mixtures without information 
about the sources and the mixing process. The observed 
signals are obtained at a set of spatially distinct sensors, each 
receiving a different combination of the source signals. The 
mixing process becomes convolutive due to reverberations in 
the real room environment. Separation may be achieved in 
different ways according to the amount of prior information 
available [2]. Time domain methods are generally not 
appropriate for the convolutive BSS (CBSS) problem due to 
the computational complexity [3]. In order to reduce the 
computational cost, frequency domain methods have been 
proposed to solve the CBSS problem. The convolution 
operation in the time domain becomes multiplication in the 
frequency domain [4]. 

Independent vector analysis (IVA) is a method to tackle 
BSS in the frequency domain. The technique has proven 
efficient in separating independent speech signals from 
convolutive mixtures [5]. It solves, algorithmically, the 
problematic permutation problem inherent in independent 
component analysis (ICA) [6]. IVA extends ICA from a 
univariate source signal model to a multivariate one.  The 
multivariate source prior models statistical inter dependency 
across the frequency bins of each source. 

The original IVA method proposed in [5] runs in an 
offline batch manner where the entire set of input samples is 
gathered before calculating the parameters. This approach is 
not applicable to practical online systems. A block-based 
approach can be applied to implement a real time BSS system 
[7]. However, this approach encompasses heavy 
computational load. A fully online version of the IVA 
algorithm was proposed in [8] which is suitable for practical 
embedded systems. In online IVA, the coefficients of the 
separation filter are updated at every time frame. 

Usual online IVA methods use a fixed learning rate to 
update the unmixing matrix. If the learning rate is set to a high 
value, the solution convergences faster with large fluctuations. 
For small learning rate value, the convergence is slower with 
smoother solution. In this paper, the contribution is to 
introduce a new adaptive learning scheme to improve the 
performance in terms of convergence time and steady state 
separation. The scheme combines the advantages of the high 
and small values of the learning rate. The learning rate is 
controlled by a Frobenius norm as a measure of the proximity 
to the target solution, which is extracted from the learning 
gradient adopted. Two source priors are used to model the 
speech signals; the super-Gaussian distribution proposed in 
the original IVA [5] based on a spherically symmetric Laplace 
(SSL) distribution and a generalized Gaussian distribution 
proposed in [9] which exploits fourth order inter-frequency 
correlation and was previously only tested on the batch IVA.  

The original IVA algorithm was evaluated using synthetic 
room impulse responses (RIRs) based on the image source 
method (ISM) [10] which are artificial and do not represent a 
real life room environment. In this work, the proposed scheme 
is evaluated on real room impulse responses which are termed 
as binaural room impulse responses (BRIRs) [11]. Real 
recorded speech signals from the TIMIT acoustic-phonetic 
continuous speech corpus [12] are used as the source signals.  
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This paper is organized as follows: in Section II, the 
online IVA method is introduced, the adopted source priors 
are described and the proposed scheme is presented. The 
simulations and experimental results are shown in Section III. 
Finally, conclusions are drawn and future work is discussed in 
Section IV.  

II. BACKGROUND THEORY 

The BSS problem can be concisely stated as the estimation of 
N source signals from M observed mixture signals that are 
unknown functions of the sources.  

A. Online IVA 

The noise free FDCBSS online IVA mixing and separation 
models are described as [8]: 

[݊]௝(௞)ݔ  = ෍ ௝݄௜(௞)[݊]ݏ௜(௞)[݊]ே
௜ୀଵ  (1) 

[݊]௜(௞)ݏ̂  = ෍ ௝(௞)[݊]ெݔ[݊]௜௝(௞)ݓ
௝ୀଵ  (2) 

where ݔ௝(௞)[݊], ݏ௜(௞)[݊] and ̂ݏ௜(௞)[݊] are the j-th observation 
value, the i-th source signal and i-th estimated source at time 

frame n at the k-th frequency bin respectively. ௝݄௜(௞)[݊] and ݓ௜௝(௞)[݊] are the mixing and unmixing filter coefficients at time 
frame n at the k-th frequency bin respectively. k = 1, 2, ... , K, 
and K is the number of frequency bins. 

IVA uses a multivariate source prior to retain the 
dependency between different frequency bins of each source. 
The independence is measured by the Kullback-Leibler (KL) 
divergence between the exact joint probability density 
function of the estimated source vectors ࢙)݌ොଵ, … ,  ොே) and the࢙
product of marginal probability density functions of the 
individual source vectors ∏ ே௜ୀଵ(ො௜࢙)ݍ  [4]: 

ܥ  = ࣦࣥ ൬࢙)݌ොଵ, … , (ොே࢙ ฯෑ ேଵ(ො௜࢙)ݍ ൰ (3) 

The source prior q(sො୧) in the cost function is a vector 
across all frequency bins. Each source is multivariate and the 
KL divergence would be minimized when the dependency 
between the source vectors is removed but the inherent 
dependency between the components of each vector is 
preserved. The learning algorithm for the parameters of the 
separating filters is derived by minimizing the KL cost 
function using a gradient descent method [13]. 

B. Source Priors 

The performance of the IVA algorithm greatly depends on the 
multivariate inter-dependency model used as a source prior. 
The IVA algorithm proposed in [5] defines the source prior as 

a dependent multivariate super-Gaussian distribution in the 
form: ݍ(࢙௜) = ݌ݔ݁ߙ ቆ−ට(࢙௜ − ௜)ுΣ௜ିࣆ ଵ(࢙௜ −  ௜)ቇ (4)ࣆ

where (∙)ு denotes Hermitian transpose, ૄ୧ and Σ୧ are the 
mean vector and covariance matrix of the i-th source signal, 
respectively. Assuming zero mean, identity covariance matrix 
and unity standard deviation:  

(௜࢙)ݍ    = ߙ ݌ݔ݁ ௜(௞)หଶ௄ݏඩ෍ห−ۇۉ
௞ୀଵ  (5) ۊی

The resulting non-linear multivariate score function 
vector is given as: 

 ߮(௞)൫̂ݏ௜(ଵ) … ௜(௞)൯ݏ̂ = ∑௜(௞)ටݏ̂ ห̂ݏ௜(௞)หଶ௄௞ୀଵ  (6) 

Y. Liang et al. [9] proposed a generalized Gaussian 
source prior in the form: 

(௜࢙)ݍ = ݌ݔ݁ߙ ቆ− ට(࢙௜ − ௜)ுΣ௜ିࣆ ଵ(࢙௜ − ௜)యࣆ ቇ (7) 

The distribution has heavier tails than the distribution in 
the original IVA and the authors claim it is more robust to 
outliers present in statistically non-stationary speech. 
Assuming zero mean, identity covariance matrix and unity 
standard deviation: 

(௜࢙)ݍ    = ߙ ݌ݔ݁ ௜(௞)หଶ௄ݏඩ෍ห −ۇۉ
௞ୀଵ

య
 (8)   ۊی

The resulting non-linear multivariate score function 
vector is given as: 

 ߮(௞)൫̂ݏ௜(ଵ) … ௜(௞)൯ݏ̂ = ∑௜(௞)ටቀݏ̂ ห̂ݏ௜(௞)หଶ௄௞ୀଵ ቁଶయ        (9) 

C. The Online Learning Algorithm 

The coefficients of the separation filter coefficients are 
updated at every time block using a normalized learning rate 
as follows [8]:  

݊]௜௝(௞)ݓ + 1] = [݊]௜௝(௞)ݓ +  ௜௝(௞)[݊] (10)ݓ߂ଵି([݊](௞)ߦ)ටߟ

where ߟ is the learning rate and  ߦ(௞)[݊] is a normalisation 
factor given by: 



[݊](௞)ߦ = ݊](௞)ߦߚ − 1]+ (1 − (ߚ ෍ หݔ௜(௞)[݊]หଶ ܰൗே
௜ୀଵ  

 

(11) 

where ߚ ∈ [0,1]  is a smoothing factor and ݓ߂௜௝(௞)[݊] is the 
gradient with nonholomonic constraint of the current frame as 
follows: ݓ߂௜௝(௞)[݊] = ෍൫߉௜௝(௞)[݊] − ℜ௜௝(௞)[݊]൯ே

௟ୀଵ  ௜௝(௞)[݊] (12)ݓ

where Λ(௞)[݊] is a diagonal matrix based on the non-linear 

score function (Λ௜௜(௞)[݊] = ℜ௜௜(௞) and Λ௜௟(௞)[݊] = 0 when ݅ ≠ ݈) 
and  ℜ(௞)[݊] is the online scored correlation matrix at the 
current frame termed as: 

 ℜ௜௝(௞)[݊] = ߮(௞)൫̂ݏ௜(ଵ) …  ௟(௞)∗[݊] (13)ݏ௜(௞)൯̂ݏ̂ 

and (∙)∗ denotes the conjugate operator. 

D. New Adaptive Online Learning  

The gradient ݓ߂௜௝(௞)[݊] converges to zero as ߉௜௝(௞)[݊] 
approaches ℜ௜௜(௞)[݊] i.e. ߉௜௝(௞)[݊] − ℜ௜௝(௞)[݊] approaches zero. 
We therefore assign: 

[݊](௞)ܩ  = ฮΛ(௞)[݊] − ℜ(௞)[݊]ฮி  (14) 

where ‖. ‖ி denotes the Frobenius norm. 

We utilise the descending behaviour of  ܩ(௞)[݊] as a gear-
shifting type operator. In the initial stages the learning rate is 
set to a high value to move faster towards the solution. Then it 
decreases as the system converges to reduce the fluctuations 
and improve stability. We define a new normalised learning 
rate at time frame n as: 

[݊](௞)ߟ  = ଴ߟ ฮܩ(௞)[݊]ฮி‖ܩ(௞)[1]‖ி (15) 

where ߟ଴ is the initial learning rate. In a non-stationary 
environment ܩ(௞)[1] could be reinitialized. Then ߟ(௞)[݊] is 
smoothed using as follows: ߟ(௞)[݊] = ቂߟߣ(௞)[݊ − 1] + (1 −  ቃ (16)[݊](௞)ߟ(ߣ

where ߣ = 0.99  is an empirically determined smoothing 
factor. ߟ(௞)[݊] will start with the initial value ߟ଴ for the first 
frame and then it decreases as n increases. The online update 
equation is adjusted accordingly as: ݓ௜௝(௞)[݊ + 1] =   [݊]௜௝(௞)ݓ߂ଵି([݊](௞)ߦ)ට[݊](௞)ߟ+                       [݊]௜௝(௞)ݓ 

(17) 

III. SIMULATION STUDIES 

In this section we evaluate the proposed adaptive learning 
scheme for the IVA method using the two source priors. 

A. Experimental setup 

Experiments were conducted to evaluate the performance of 
the proposed scheme using both source priors. For our study, a 
two-input (speaker) two-output (microphone) (TITO) system 
under spatially stationary conditions was adopted. The 
proposed scheme was evaluated on real room impulse 
responses [11]. Real recorded speech signals, from the TIMIT 
acoustic-phonetic continuous speech corpus [12], were used as 
the source signals. The sources were convolved with the room 
impulse response to generate the mixture signals at the 
microphones. The signal to distortion ratio (SDR) was used to 
measure the separation performance by using the SISEC 
toolbox [14]. SDR is defined by the power ratio between the 
components related to the target source and interference 
sources plus artifacts from the separation algorithm: 

ܴܦܵ  = 10 logଵ଴ ฮ࢙௧௔௥௚௘௧ฮଶฮࢋ௜௡௧௘௥௙ +  ௔௥௧௜௙ฮଶ (18)ࢋ

where ‖. ‖ଶ denotes the energy of the signal, ࢙௧௔௥௚௘௧  is the 
source of interest, ࢋ௜௡௧௘௥௙ is the interference introduced by the 
other sources and ࢋ௔௥௧௜௙ is the artifacts error term. SDR is 
directly proportional to the quality of source separation.  

The room impulse responses were obtained from the 
BRIRs database [11] which was recorded using a dummy head 
to simulate the effect of a human head in a real acoustic 
environment. BRIRs were measured for 21 different relative 
source locations, consisting of all combinations of seven 
source azimuths (0°, 15°, 30°, 45°, 60°, 75°, and 90°) and 
three source distances (0.15m, 0.40m, and 1m) from the centre 
point between the ears of the head.  

The room layout and experimental setup are illustrated in 
Figure 1. The microphones were placed at the centre of the 
room. The sources were placed at 0.40m from the centre of the 
microphones. Source s1 was at a fixed position perpendicular 
to both microphones at 0° and source s2 was at five different 
angles (15° to angle 75°) relative to source s1. The inter-
microphone distance is 15cm. The different experiment 
parameters used for our simulations are shown in Table 1.  

For both learning algorithms the leaning rate ߟ was set to 
a value that makes the system converge quickly whilst 
maintaining stability for all source angles. Such large value of ߟ makes the algorithm converge faster but produces high 
fluctuations in the steady state, which may lead to instability. ߟ was set to 0.5 and ߟ଴ to 2.0.  

 



 

60° 

 

Figure 1. Room layout and experimental setup 

 

Table 1 Experiment Parameters 

Room dimensions 9m×5m×3.5m 

Inter-Microphone distance 0.15 m 

Source distance 0.40 m 

Source 1 position 0° 
Source 2 positions 15°, 30°, 45°, 60°, 75° 
The length of the DFT 2048 
Sampling frequency 8 kHz 
Window type Hanning 
Sound propagation speed 343 m/s 
Reverberation time 565 ms η for original method 0.5 ߟ଴ for proposed method 2.0 
Smoothing factor β 0.5 

 
 
B. Results 

Ten speech signal pairs were randomly selected from the 
TIMIT database to evaluate the algorithms. The sources were 
separated from the generated mixtures and the calculated SDR 
was averaged over the ten results. Figure 2 shows the SDR 
convergence plots for the different algorithms with source s2 at 
angles 30° and 60°over a period of 150 seconds. 

We evaluated the separation performance in terms of the 
convergence time and the steady state SDR. The steady state 
is considered to be the average SDR of the last 50 seconds and 
we define the convergence time as the time it takes the 
algorithm to reach 80% of the final steady state SDR. The 
values of the convergence times in seconds are shown in Table 
2 and the values of the average steady state SDR in dB are 
shown in Table 3. 

 

Figure 2. SDR convergence in (dB) for the various algorithms 
averaged over 10 speech mixtures, where (a) s2 is at angle 30° and (b) 
s2 is at angle 60° 

Table 2. Convergence time in seconds for various algorithms at 
different source s2 positions 

 Angle 
Source Prior 15° 30° 45° 60° 75° 
super-Gaussian [5] 75 42 38 35 31 
generalized Gaussian [9] 75 40 35 30 25 
[5] with Adaptive learning 50 22 17 16 14 
[9] with Adaptive learning 40 17 15 14 14 

 

Table 3. Average steady state SDR in (dB) for various algorithms at 
different source s2 positions 

 Angle 
Source Prior 15° 30° 45° 60° 75° 
super-Gaussian [5] 9.25 13.24 14.94 15.82 16.36 
generalized 
Gaussian [9] 

9.18 13.18 14.85 15.71 16.22 

[5] with Adaptive 
learning 

9.26 13.37 15.11 16 16.56 

[9] with Adaptive 
learning 

9.22 13.2 14.88 15.73 16.25 
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The results show, generally, the larger the angle of source 
s2 the better the performance in both the convergence speed 
and steady state SDR, with less disparity as the angle 
increases. The results exhibit a consistent and considerable 
improved performance of the proposed scheme in terms of the 
convergence speed. It reduces the convergence time by 
approximately an average of 20.5 seconds (46%) using the 
super-Gaussian source prior and by an average of 21 seconds 
(51%) using the generalized Gaussian source prior. The 
proposed scheme with the generalized Gaussian source prior 
[9] converges faster than with the super-Gaussian source prior 
[5]. The former is faster, on average, by 3.8 seconds (16%).  

In terms of the steady state all algorithms converge to an 
SDR value with small variations. This demonstrates the 
success of the adaptive learning scheme in reducing the 
learning rate as the algorithm convergence to the target 
solution. The average steady state SDR improvements are 
approximately 0.15 dB and 0.05 dB using the super-Gaussian 
source prior the generalized Gaussian source prior 
respectively. The proposed scheme with the super Gaussian 
source prior [5] achieves better separation performs than with 
the super-Gaussian source prior [9] by approximately 0.2 dB.  

IV. CONCLUSION 

In this paper, an adaptive learning based scheme to control the 
learning rate has been proposed in order to improve the 
performance and convergence properties of the online IVA 
algorithm. The scheme was tested and compared with the 
original IVA algorithm using real room impulse responses and 
real recordings. The experimental results have shown the new 
scheme yields faster and smoother convergence time, better 
separation performance measured by SDR. On the balance of 
results, we believe the best overall performance is achieved 
with adaptive learning using the generalized Gaussian source 
prior. The scheme incurs an additional computational cost 
calculating the normalised Frobenius norm at every time 
frame. Future work will include evaluating the new scheme 
exploring other source prior distributions such as the Student’s 
t distribution [15, 16] and mixed source prior [17]. An 
interesting research point will be combining the super 
Gaussian and the generalized Gaussian source priors to 
acquire the best aspect of each distribution. 
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