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Abstract—The popular MUSIC algorithm has been recently
extended to broadband scenarios through the use of polyno-
mial matrix methods and polynomial eigenvalue decomposition
algorithms, producing impressive results, at the cost of a high
computational complexity. This is due to the heuristic angular
search stage of the algorithm. Through the extension of the
popular narrowband variant of the MUSIC algorithm, Root-
MUSIC, we aim to significantly reduce the computational cost
of spatio-spectral polynomial MUSIC algorithm by eliminating
this searching requirement. The performance of both algorithms
are analysed and compared, demonstrating a similar performance
with a significant reduction in computation time.

I. INTRODUCTION

The Multiple Signal Classification (MUSIC) algorithm
is a popular super-resolution DoA estimation technique for
narrowband sources. Due to its popularity, there is a strongly
developed framework surrounding the algorithm. This includes
many variations, one being the Root-MUSIC algorithm [1].
However, MUSIC and most derivatives are reliant upon ex-
ploiting the eigenstructure of a spatial-only covariance matrix.
The direct use of this spatial-only covariance matrix is inappro-
priate in a broadband scenario as time delay across the array
can no longer be treated as a phase shift of the carrier, but
rather as a linear phase shift across all frequencies [2].

Broadband DoA algorithms based on coherent signal sub-
space methods coherently combine spatial covariance matrices
at separate frequency bins in to a single spatial covariance
matrix at a single frequency bin. This new spatial covariance
matrix will have the same structure as the narrowband case,
thus conventional MUSIC algorithm and variants can be used
[3]. While simple, coherent signal subspace methods have
drawbacks.

The method of coherently combining spatial covariance
matrices at separate frequency bins into a single matrix re-
quires a transformation matrix to ‘pre-steer’ the data [3]. The
generation of this transformation matrix requires knowledge of
the sources DoA a priori, thus a preliminary DoA estimate is
required before this coherent, high resolution DoA estimation
step.

Recent polynomial matrix methods, such as the polynomial
eigenvalue decomposition (PEVD), provide an elegant solution
in many broadband sensor array signal processing applications,
such as beamforming [4] and DoA estimation. The Polyno-
mial MUSIC (PMUSIC) algorithm is a super-resolution DoA
estimator for broadband signals [5]. This algorithm is able to
achieve very good performance, but with a high computational
cost.

In this paper, we propose a generalisation of the narrow-
band Root-MUSIC algorithm in [1] to broadband scenarios via
the use of polynomial matrix methods and the PEVD in effort
to significantly reduce computation time.

The remainder of this paper is organised as follows; Section
II discusses the data model used for broadband sources illu-
minating a uniform linear array, and identifies the difficulties
in broadband direction finding. Section III introduces the
polynomial space-time covariance matrix and the polynomial
eigenvalue decomposition. Sections IV and V introduce the
SSP-MUSIC, and Root SSP-MUSIC algorithms. Section VI
analyses and compares the performance of these algorithms.

Notation. To keep with standard notation, vectors and
matrices are denoted by bold-lower and upper case variables
respectively, e.g. 𝒂 and 𝑨. Polynomial vectors and matrices
are denoted as 𝒂(𝑧) and 𝑨(𝑧). The 𝑧- transform of a variable
𝑎(𝑛) is denoted as 𝑎(𝑛) ∘ − ∙ 𝑎(𝑧). Convolutions are denoted
by the ⊗ operator.

II. SIGNAL MODEL

Let us consider a multi-antenna array of 𝑀 omnidirectional
elements in the far field of 𝑃 broadband sources through a
non dispersive medium. The received signal at the array is
modelled as the superposition of the 𝑃 steered sources, plus
additive noise, which is assumed to be uncorrelated, white, and
Gaussian [5].

For a uniform linear array, the wavefront delay between
adjacent antenna elements, 𝜏𝑝, is calculated as:

𝜏𝑝 =
𝑑 sin(𝜃𝑝)

𝑐
(1)

Where 𝑑 is the inter element spacing, 𝜃𝑝 is the direction of
arrival of the 𝑝𝑡ℎ source, and 𝑐 is the speed of light.

If a source is narrowband, the complex envelope is ap-
proximately constant across the array manifold. This reduces
the problem to a time-shifted sinusoid, i.e. a phase shift of
the carrier [6]. This is an important approximation in the
narrowband algorithms as this allows the formation of a simple
spatial only covariance matrix at a single frequency bin.

For broadband sources, the inter-element time delay cannot
be approximated by a phase shift of the carrier, and must be
considered as a linear phase shift across all frequencies. This
leads to the following convolutive mixture model [2]:
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𝒙(𝑛) =

𝑃∑
𝑝=1

[𝒂𝒑 ⊗ 𝑠𝑝(𝑛)] + 𝝂(𝑛) (2)

Where 𝒙(𝑛) is the sampled vector of antenna signals, 𝒂𝒑 is the
broadband steering vector for the 𝑝𝑡ℎ source, 𝑠𝑝(𝑛) is the 𝑝𝑡ℎ

sampled source signal, and 𝝂(𝑛) is the additive noise vector.
This linear phase shift can be modelled as an ideal fractional
delay FIR filter, thus the broadband steering vector for the 𝑝𝑡ℎ

source can be modelled as a vector of these ideal filters, where
the delay is an integer multiple of 𝜏𝑝.

𝒂𝒑 =

⎡
⎢⎢⎣

𝛿[𝑛− 0𝜏𝑝]
𝛿[𝑛− 1𝜏𝑝]

...
𝛿[𝑛− (𝑀 − 1)𝜏𝑝]

⎤
⎥⎥⎦ (3)

Where 𝛿[.] represents an ideal fractional delay FIR filter.
This broadband steering vector may also be represented as
a polynomial vector via the z-transform. Since the wavefront
delay from the 𝑚𝑡ℎ antenna is an integer multiple from that
of the first, this steering vector can be modelled with a
Vandermonde structure.

𝒂𝒑(𝑧) =

⎡
⎢⎢⎢⎣

𝜓0
𝑝(𝑧)

𝜓1
𝑝(𝑧)
...

𝜓
(𝑀−1)
𝑝 (𝑧)

⎤
⎥⎥⎥⎦ (4)

Where 𝜓𝑝(𝑧) is the impulse response of the ideal fractional
delay filter with delay 𝜏𝑝. This Vandermonde structure is
important when forming the Root SSP-MUSIC algorithm,
which will be discussed in Section V. These ideal fractional
delay FIR filters, 𝛿[𝑛−𝜏 ], can be approximated with reasonable
accuracy using either appropriately windowed sinc filters, or
more complex filter bank techniques [7].

III. SPACE-TIME COVARIANCE MATRIX AND PEVD

Due to the convolutive mixture model in equation 2, a range
of temporal correlations need to be considered in addition to
spatial correlations. This leads to the definition of the space-
time covariance matrix, 𝑹𝒙𝒙(𝑧) [2]

𝑹𝒙𝒙(𝑧) =

∞∑
𝜏=−∞

𝑹𝒙𝒙(𝜏)𝑧
−𝜏 (5)

Where 𝑹𝒙𝒙(𝜏) = 𝐸[𝒙(𝑛)𝒙𝐻(𝑛−𝜏)]. The process is assumed
to be stationary and ergodic, thus this expectation operator
can be calculated through temporal averaging. This space time
covariance matrix may also be expressed as:

𝑹𝒙𝒙(𝑧) = 𝑨(𝑧)𝑹𝒔𝒔(𝑧)𝑨(𝑧) + 𝜎2
𝜈𝑰 (6)

𝑹𝑠𝑠(𝜏) = 𝐸[𝑺(𝑛)𝑺𝐻(𝑛− 𝜏)] (7)

Where 𝑨(𝑧) is a matrix of polynomial steering vectors, and
𝑹𝒔𝒔(𝑧)∙−∘𝑹𝑠𝑠(𝜏) is the source cross spectral density matrix.

This matrix will be full rank under the assumption that all
sources are uncorrelated [8].

By construction, the space-time covariance matrix pos-
sesses the required para-hermitian property (𝑹𝒙𝒙(𝑧) =
�̃�𝒙𝒙(𝑧)) for the SBR2 [2] or SMD [9] polynomial eigenvalue
decomposition algorithms. When decomposed to its para-
unitary eigenvectors 𝑼(𝑧), and polynomial eigenvalues Λ(𝑧),
the space-time covariance matrix will take the form

𝑹𝒙𝒙(𝑧) = 𝑼(𝑧)Λ(𝑧)�̃�(𝑧) (8)

This can be further partitioned into signal and noise
subspaces. Assuming all sources illuminating the array are
uncorrelated, the source cross spectral density matrix will be of
rank 𝑃 , thus there will be 𝑃 significant eigenvalues, indicating
the dimensions of the signal subspace.

𝑹𝒙𝒙(𝑧) = [𝑼𝒔(𝑧) 𝑼𝒏(𝑧)]

[
Λ𝒔(𝑧)

Λ𝒏(𝑧)

] [
𝑼𝒔(𝑧)

𝑼𝒏(𝑧)

]
(9)

These polynomial eigenvalues are representative of power
spectral densities, and can thus be evaluated for 𝑧 = 𝑒𝑗Ω,
where Ω is the normalised frequency.

IV. SSP-MUSIC ALGORITHM

The rationale behind the polynomial MUSIC algorithm is
to exploit the orthogonality between signal and noise sub-
spaces. It is clear that the polynomial steering vectors will
form part of the signal subspace, and are thus orthogonal to that
of the noise. Similar to narrowband MUSIC, the generalised
quantity Γ(𝜃, 𝑧), can be formed [5]:

Γ(𝜃, 𝑧) = �̃�(𝜃, 𝑧)𝑼𝒏(𝑧)�̃�𝒏(𝑧)𝒂(𝜃, 𝑧) (10)

with 𝒂(𝜃, 𝑧) being the test steering vector. The goal is
to solve the above equation for Γ(𝜃, 𝑧) = 0. The conven-
tional method involves forming the MUSIC spatio-spectrum,
𝑃𝑆𝑆𝑃 (𝜃,Ω), by heuristically searching across a range of
frequencies and angles. The peaks in this spatio-spectrum will
coincide the solutions for Γ(𝜃, 𝑧) = 0.

𝑃𝑆𝑆𝑃 (𝜃,Ω) =
1

Γ(𝜃, 𝑧)
∣𝑧 = 𝑒𝑗Ω (11)

While this method yields good results, it is moderately
expensive in terms of its computational cost. This is due
to the many convolutions required for polynomial matrix
multiplication in the spatio-spectral search.

V. ROOT SSP-MUSIC ALGORITHM

The Root Polynomial MUSIC algorithm aims to avoid
the many convolution stages required in the above spatio-
spectral search. By exploiting the Vandermonde structure of
the steering vector for a uniform linear array, Γ(𝜃, 𝑧) may also
be expressed as a polynomial of 𝜓(𝑧)



Γ(𝑧) =�̃�(𝑧)𝑼𝒏(𝑧)𝑼𝒏(𝑧)𝒂(𝑧) = 0

=�̃�(𝑧)𝑪(𝑧)𝒂(𝑧)
(12)

where 𝑪(𝑧) = 𝑼𝒏(𝑧)𝑼𝒏(𝑧). Recall that 𝜓(𝑧) is representative
of an ideal all-pass fractional delay FIR filter with delay
𝜏 , and its time reversed conjugate, 𝜓∗(𝑧−1) will have a
fractional delay −𝜏 , thus 𝜓(𝑧)𝜓∗(𝑧−1) ≈ 1. This allows
us to express Γ(𝜓(𝑧)) as a Laurent polynomial containing
2𝑀 − 1 coefficients, which are calculated as the sum of the
sub-diagonals of 𝑪(𝑧), i.e.

Γ(𝜓(𝑧)) =
𝑀−1∑

𝑙=−(𝑀−1)

𝑏𝑙(𝑧)𝜓
𝑙(𝑧) (13)

Where 𝑏𝑙 is the sum of 𝑙𝑡ℎ diagonal of 𝑪(𝑧).

Note that Γ(𝜓(𝑧)) is a polynomial of 𝜓(𝑧), while 𝜓(𝑧)
is polynomial of 𝑧, as such standard polynomial root finding
algorithms cannot be directly applied to find the solutions
for 𝜓(𝑧). Recall that 𝜓(𝑧) is a fractional delay FIR filter,
representing the inter-element delay for the source(s) present.

This problem can be solved in the frequency domain by
evaluating the polynomials of 𝑧 for 𝑧 = 𝑒𝑗Ω. Thus equation
13 becomes:

Γ(𝜓(𝑒𝑗Ω)) =

𝑀−1∑
𝑙=−(𝑀−1)

𝑏𝑙(𝑒
𝑗Ω)𝜓𝑙(𝑒𝑗Ω) (14)

Conventional polynomial rooting algorithms can now be
applied to each evaluated frequency. As 𝜓(𝑧) ∙ − ∘ 𝛿[𝑛 − 𝜏 ]
is representative of an all-pass fractional delay FIR filter, with
delay 𝜏 and unity gain, the 𝑃 roots closest to the unit circle
are indicative of the DoA of the 𝑃 sources. The direction of
arrival of the 𝑝𝑡ℎ source can be estimated via

𝜃𝑝(𝑒
𝑗Ω) = sin−1

[
𝑐 arg(𝑞𝑝(𝑒

𝑗Ω))

Ω𝑑

]
(15)

Where 𝑞𝑝(𝑒
𝑗Ω) is the root relating to the 𝑝𝑡ℎ source at

frequency Ω.

VI. PERFORMANCE ANALYSIS

To analyse and compare the performance of the SSP-
MUSIC and Root SSP-MUSIC algorithms, parameters such as
resolution, accuracy and computational time of the algorithms
are evaluated through simulations.

A. Spatio-Spectral Estimation

In the simulated scenario, two wideband sources are present
in anechoic conditions with directions of arrival 30∘ and −40∘
in the frequency band Ω ∈ [0.3𝜋, 0.7𝜋]. The received SNR is
5 dB. The spatial covariance matrix, 𝑹𝒙𝒙(𝜏) can be estimated
via temporal averaging:

𝑹𝒙𝒙(𝜏) ≈ 1

𝑁

𝑁∑
𝑛=1

𝑥(𝑛)𝑥𝐻(𝑛− 𝜏) (16)

The polynomial space-time covariance matrix is calculated
via the 𝑧-transform of the spatial covariance matrix

𝑹𝒙𝒙(𝑧) =
𝑊∑

𝜏=−𝑊

𝑹𝒙𝒙(𝜏)𝑧
−𝜏 (17)

Note that equation 17 differs from 5 as the summation
is now limited to 𝑊 . The value of 𝑊 should be determined
experimentally such that 𝑹𝒙𝒙(𝜏) ≈ 0 for ∣𝜏 ∣ > 𝑊 [2]. As
mentioned in Section III, this polynomial matrix possesses the
required para-Hermitian property, and can thus be decomposed
into its polynomial eigenvalues, Λ(𝑧), and para-unitary eigen-
vectors 𝑼(𝑧). For these simulations, the MSME-SMD PEVD
[10] algorithm is used.

Evaluating the polynomial eigenvalues for 𝑧 = 𝑒𝑗Ω yields
the power spectral density of the eigenvalues. Similarly to the
narrowband EVD on a spatial covariance matrix, the number of
significant eigenvalues determine the dimensions of the signal
subspace, and thus number of uncorrelated sources present. In
addition, the eigenvalue power spectral density also contains
spectral information on the uncorrelated sources present.

Figure 1: Polynomial Eigenvalue PSD

Figure 1 demonstrates the power spectral density (PSD)
of the eigenvalues for this particular scenario. Through a
threshold of 20 dB, it is clear that there are two significant
eigenvalues present with spectral content in the band Ω ∈
[0.3𝜋, 0.7𝜋].

The two significant eigenvalues determine the dimensions
of the signal subspace, and thus that of the noise. The SSP-
MUSIC algorithm from (11) is performed using this deter-
mined subspace. Similarly to the model, the elements of the
polynomial steering vectors used are the Hann windowed sinc
fractional delay FIR filters, with a length of 31 elements.



Figure 2: Polynomial MUSIC Spatio-Spectrum

Figure 2 shows the estimated spatio-spectrum with the
SSP-MUSIC algorithm and correctly estimates the direction
of arrival of the two sources at −40∘, and 30∘. As the
eigenvalue PSD implies there are no sources outside the band
Ω ∈ [0.3𝜋, 0.7𝜋], the spatio-spectrum is only estimated for this
region.

Applying the Root SSP-MUSIC algorithm on the same data
set yields the spatial spectrum in Figure 3

Figure 3: Root-Polynomial MUSIC Spatio-Spectrum

While there is no amplitude information in this spatio-
spectrum, the estimated directions of arrival coincides with
the peaks of the SSP-MUSIC spatio-spectrum, and correctly
identifies the direction of arrival of the two sources as −40∘,
and 30∘.

B. SNR Performance

A Monte-Carlo simulation was performed to analyse the
performance of both algorithms under different SNRs. For
each DoA estimate, the DoA of the source was chosen at

random from a uniformly distributed set of possible DoAs,
𝜃𝑝 ∈ [−50∘, 50∘]. For each SNR, 100 runs with randomised
DoAs were performed. Figure 4 displays the mean squared
error of the estimators and it is easy to see that both the SSP-
MUSIC and Root SSP-MUSIC algorithms perform similarly
under different signal to noise ratios, with an MSE < 0.05 for
signal to noise ratios ≥ −4 dB.

Figure 4: MSE for Monte Carlo simulation at specific SNRs

C. Computational Cost

The heuristic angular search of the SSP-MUSIC algorithm
is an expensive computational task. This is due to the polyno-
mial matrix multiplications when calculating Γ(𝜃, 𝑧). The Root
SSP-MUSIC algorithm replaces this search with finding the
roots of a polynomial. Both algorithms, however still require
to evaluate polynomials to estimate the spatio-spectrum.

The computer performing this simulation utilised the fol-
lowing hardware and software. Intel core i7-6700 quad-core
processor, 16 Gb DDR4 RAM, 256 Gb SSD, Windows 7 64
bit, MATLAB R2016b.

Table I: Normalised Mean Computation time for SSP-MUSIC
and Root SSP-MUSIC algorithm

𝑁𝑓 30 60 120 240

Mean Norm. SSP-MUSIC Comp Time 1 1.04 1.124 1.268
Mean Norm. Root SSP-MUSIC Comp Time 0.039 0.054 0.079 0.131

The mean normalised simulation time from 100 runs of
both algorithms is displayed in Table I. All values are nor-
malised to the SSP-MUSIC computation time for 30 frequency
evaluation points. These results show the Root SSP-MUSIC
algorithm is considerably faster in computation time, but has
a stronger scaling with the number of frequencies evaluated,
thus for a large number of frequency points, both algorithms
will have similar complexity.

VII. CONCLUSION

In this paper, an extension of the Root-MUSIC algorithm
to broadband scenarios is introduced using polynomial matrix



methodologies. Forming a more computationally efficient so-
lution for the problem of broadband direction finding in the
context of uniform linear arrays. Through simulation results,
we have demonstrated that both standalone SSP-MUSIC and
Root-SSP MUSIC algorithms perform similarly, yet with a
substantial reduction in computational cost with the Root SSP-
MUSIC algorithm, especially for searches on few evaluated
frequency points.
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