

Compressed Sensing Solutions for Airborne Low Frequency SAR

Mike E. Davies & Shaun I. Kelly The University of Edinburgh

WF3 - Compressive sensing for radar applications

Overview

Motivation/Challenges

- Motivation: Why Airborne LF SAR?
- \blacktriangleright Challenges:
	- \triangleright Notching on transmit
	- ▶ Radio Frequency Interference (RFI)
	- \blacktriangleright Phase errors
	- \blacktriangleright Near field imaging
- \blacktriangleright Solutions (CS based)

Motivation

Why use VHF/UHF Spectrum?

- \blacktriangleright Foliage Penetration (FoPEN) Radar
- \blacktriangleright Ground Penetration Radar (GPR)
- \blacktriangleright Scattering is dependent on wavelength.

Issues which effect the VHF/UHF spectrum

- \blacktriangleright Interference between SAR systems and radio, television and communications systems.
- \blacktriangleright Radio frequency interference (RFI)
- \blacktriangleright Interference Types:
	- 1. SAR systems can interfere with other spectrum users.
	- 2. Other users in the spectrum can interfere with SAR system.

Challenges

Notched LFM on Transmit

Challenges

Standard Image Formation with Notching

Solution Outline

CS-based components

- \blacktriangleright Sparse Image Formation
- \blacktriangleright Fast forward/back projections
- \blacktriangleright Compressive Autofocus
- \triangleright RFI suppression

Notched LFM on Transmit

System model (after dechirping and deskewing):

$$
\mathsf{Y}=\mathsf{diag}\left(\mathsf{w}\right)h(\mathsf{X})+\mathsf{N}\\\mathsf{Y}\in\mathbb{C}^{M'\times N'},~\mathsf{N}\in\mathbb{C}^{M\times N},~\mathsf{w}\in\mathbb{R}^{M}
$$

- \triangleright **X** is the scene reflectivities
- \blacktriangleright **Y** is the phase history
- \blacktriangleright h(\cdot) is the system model without notching
- \triangleright w is a weighting that models the transmit notching
- \triangleright N is the RFI and additive noise

First Ingredient: Sparsity

 \blacktriangleright The signal/image must be sparse or well approximated by a sparse signal/image (compressible)

Will be considered later.

Second Ingredient: "Good" Measurements

Measurement equation $Y = h(X)$

An approximate sub-sampling of the k-space!

Third Ingredient: Reconstruction Algorithm

If Sparse reconstruction algorithm, e.g. constrained ℓ_1 min., greedy algorithms - OMP, IHT, etc.

Many fast algorithms available if there are fast operators available!

Interaction of Reflectors in a Range Cell

- \triangleright Random interference: Speckle dominates images due to many random reflectors in a range cell inducing multiplicative noise in the reconstructed image - not compressible.
- ▶ Coherent interference: Coherent reflectors (often targets of interest) whose intensity tend to be much larger than incoherent reflections - compressible in spatial domain.

Fast SAR Operators

- \triangleright LF SAR typically has long apertures and large beam width making the aperture non-linear and the imaging near field.
- \blacktriangleright Efficient iterative reconstruction requires fast forward/backward operators:
	- \times Direct Forward/Backward Projection too slow: $\mathcal{O}(N^3)$
	- \times Polar Format Algorithm far field imaging only
	- \times Range Migration Algorithm flat terrain model and linear aperture
	- $\sqrt{}$ Fast decimation-based Forward/Backward Projection Algorithms, e.g. [McCorkle et al. '96],...

Fast SAR Operators

Decimation-in-phase-history

- \blacktriangleright Recursive splitting of image and decimating of phase history.
- \triangleright $\mathcal{O}(N^2 \log N)$ operations.
- \triangleright e.g. [McCorkle et al. 1996], [Wahl et al. 2008].

Decimation-in-image

- \blacktriangleright Recursive splitting of phase history and decimating of image.
- \triangleright \oslash (N^2 log N) operations.
- \triangleright e.g. [Kelly and D. 2014]

Image Formation Times (seconds)

- NFFT algorithm with an interpolation kernel length of 24 samples.
- Time on a single core of 2.5 GHz Intel Xeon processor with N^2 element images and N^2 element phase histories.
- \triangleright log₂ N − log₂ 64 decomposition stages.

Fast SAR Operators

Pixel-wise Relative Errors

- Images formed using fast decimation-in-image and decimation-in-phase-history BP algorithms with three decomposition stages.
- \triangleright Pixel-wise/k-space wise relative errors in the fast BP algorithms with respect to the BP algorithm.

Phase Errors

 \blacktriangleright Inaccuracies in the propagation delay estimates introduce unknown phase errors, $\phi_{\tau_{\bm{e}_{k}}}$:

$$
\phi_{\tau_{\mathsf{e}_k}} \approx \omega_0 \tau_{\mathsf{e}_k} - \alpha \tau_{\mathsf{e}_k}^2
$$

with, $\tau_{\bm{e}_k}$ - delay error at aperture position k ω_0 - carrier freq. and α - chirp rate.

 \triangleright Modified SAR observation model with phase errors

$$
\mathbf{Y}=h(\mathbf{X})\,\text{diag}\left\{e^{j\phi}\right\}
$$

If not corrected, phase errors can defocus targets and degrade reconstructed image.

Classical Autofocus

Classical (image based) autofocus assumes far field small aperture model

► System model \sim fully determined and separable:

$$
\mathsf{Y} = \mathit{h}(\mathsf{X}) \, \text{diag}\left\{ \mathrm{e}^{j\boldsymbol{\phi}} \right\} \approx \mathsf{AXWB}
$$

- \blacktriangleright **A** and **B** \sim Fourier
- ^I Autofocus ∼ deconvolution

EX is recovered from **XΨ** using classical autofocus methods, e.g. Map Drift (MD) or Phase Gradient Autofocus (PGA)

Undetermined System Model

$$
\mathbf{Y}=\mathbf{A}'\mathbf{X}\Psi
$$

 \blacktriangleright $\mathbf{A'} \in \mathbb{C}^{N \times S}$ is undetermined, e.g. due to notching

Post-Reconstruction Autofocus

- ► Can XΨ be recovered from Y followed by a post-reconstruction autofocus?
	- ► CS Stable Sparse Recovery [Rudelson, Vershynin '08]:

 $S \geq CK_{\Psi}K_{\mathbf{X}}\log^4(N)$

with original sparsity $K_{\mathbf{x}}$ and blurring factor $K_{\mathbf{w}}$

Reconstruction quality deteriorates as phase errors increases!

Compressive Autofocus

 \triangleright Better Solution: perform joint reconstruction

minimise
$$
\|\mathbf{X}\|_1
$$

\nsubject to $\|\mathbf{Y} \text{ diag } \{\mathbf{d}\} - h(\mathbf{X})\|_F \le \sigma$
\n $d_n^* d_n = 1, n = 1, ..., N.$

- \triangleright Fast Block-relaxation algorithms via majorisation-minimisation exist [Kelly et al 2012/14]
- \triangleright No far field/small aperture assumptions
- \triangleright Theoretical guarantees: open problem

Reconstruction performance versus under-sampling ratio

 \rightarrow increasing phase errors \longrightarrow

 \sim ' \circ ' oracle reconstruction, \sim ' compressive auto-focus, ' \times ' sparse image formation with post-processing autofocus.

Figure: LF SAR image formations: [\(a\)](#page-0-0) was formed using the BP algorithm; [\(b\)](#page-0-0) was formed using sparse reconstruction (no autofocus); and [\(c\)](#page-0-0) was formed using Compressive Autofocus.

RFI suppression

- \triangleright Strong interference from AM/FM transmitters.
- \blacktriangleright RFI pre-processing suppression methods:
	- 1. Estimate-and-subtract: estimate the frequencies and phases of the RFI and then abstract.

Computationally expensive and

approximation dependent.

2. Linear filter: minimise RFI using linear filter, e.g. LMS filter and Wiener filter

Can produce large side lobes.

Dechirping

After dechirping and deskewing:

- \triangleright narrowband interferes become concentrated in time and
- \triangleright spectral notches become notches in time.

Filter-based RFI suppression

Linear RFI Filtered Reconstruction:

$$
\hat{\mathbf{X}} = g(\mathbf{H} \text{ vec}(\mathbf{Y}))
$$

$$
\mathbf{H} = \text{diag}([\mathbf{H}_1, \cdots, \mathbf{H}_{N'}])
$$

- \blacktriangleright g(\cdot) is the filtered back-projection algorithm.
- \blacktriangleright H_{n'} are the Wiener filters for each slow-time position, i.e.

$$
\boldsymbol{\mathsf{H}}_{n'} = \boldsymbol{\mathsf{I}} - \boldsymbol{\mathsf{Q}}_{\boldsymbol{\mathsf{n}}_{n'}} (\boldsymbol{\mathsf{Q}}_{\tilde{\boldsymbol{\mathsf{y}}}_{n'}} + \boldsymbol{\mathsf{Q}}_{\boldsymbol{\mathsf{n}}_{n'}})^{\text{-}1} \text{ for } \boldsymbol{\mathsf{Q}}_{\boldsymbol{x}} = \mathsf{E}\left[\boldsymbol{x} \boldsymbol{x}^{\mathsf{H}} \right]
$$

- \blacktriangleright $\mathbf{Q}_{\tilde{\mathbf{y}}_{n'}}$ are the covariance matrices of the received signal at each slow-time position
- \blacktriangleright $\mathbf{Q}_{\mathbf{n}_{n'}}$ are the covariance matrices of the RFI at each slow-time position

RFI-aware Sparse Image Formation

Incorporate RFI into the Basis Pursuit Denoising:

$$
\hat{\mathbf{X}} = \begin{aligned} \n\hat{\mathbf{X}} &= \text{minimise } \|\mathbf{X}\|_1 \\
& \text{subject to } \|\mathbf{Y} - h(\mathbf{X})\|_{\mathbf{Q_N}^{-1}} \le \epsilon, \\
& \text{where, } \|\mathbf{A}\|_{\mathbf{Q}} = \text{vec}(\mathbf{A})^H \mathbf{Q} \text{vec}(\mathbf{A})\n\end{aligned}
$$

- \triangleright \bullet Q_N is full covariance matrix of the RFI and additive noise.
- \triangleright \mathbf{Q}_{N} is well approximated using a diagonal matrix so the data fidelity term becomes a weighted Frobenius norm.

RFI-aware Sparse Image Formation Implementation

Estimate Noise Covariance:

Estimate Q_N using ten "dead-time" measurements. Assume elements of N are independent.

Unconstrained Optimisation:

$$
\hat{\mathbf{X}} = \min_{\mathbf{X}} \text{minimize} \|\mathbf{X}\|_1 + \lambda (\|\mathbf{Y} - \text{diag}(\mathbf{w})h(\mathbf{X})\|_{\mathbf{Q_N}^{-1}} - \epsilon)
$$

Approximately solved using thirty iterations of a fast iterative shrinkage thresholding algorithm.

Project onto Domain of $h(\cdot)$:

$$
\hat{\mathbf{X}} \leftarrow g(h(\hat{\mathbf{X}}))
$$

VHF/UHF SAR simulation Parameters

Reconstructed Images

Conclusions

Conclusions

- Iterative CS-based algorithms provide a good solution to LF SAR image formation with notch on transmit
- \triangleright Compressive Autofocus can be performed simultaneously
- \triangleright Receiver RFI suppression easily incorporated using a weighted Frobenius norm.
- \triangleright The proposed technique is superior to previous approaches as it does not suffer from poor range side lobes and it can accommodate a wide range of RFI.

- \triangleright S. I. Kelly, G. Rilling, M. Davies, and B. Mulgrew, 2011, "Iterative image formation using fast (re/back)-projection for spotlight-mode SAR," in Proc. IEEE Radar Conf. 2011, pp. 835-840.
- ▶ S. I. Kelly, C. Du, G. Rilling and M. Davies, 2012, "Advanced image formation and processing of partial synthetic aperture radar data," Signal Processing, IET 6 (5), pp. 511-520.
- ▶ S. I. Kelly, M. Yaghoobi and M. E. Davies, 2012, "Auto-focus for under-sampled synthetic aperture radar," in Sensor Signal Processing for Defence (SSPD 2012) pp. 1-5.
- ▶ S. I. Kelly and M. E. Davies, 2013, "RFI suppression and sparse image formation for UWB SAR," Radar Symposium (IRS), 14th International 2, pp. 655-660.
- ▶ S. I. Kelly, M. Yaghoobi and M. E. Davies, 2014, "Sparsity-based Autofocus for Under-sampled Synthetic Aperture Radar" to appear in IEEE Trans. Aerospace and Electronic Systems, 2014.
- ▶ S. I. Kelly and M. E. Davies, 2014, "A Fast Decimation-in-image Back-projection Algorithm for SAR," in Proc. IEEE Radar Conf. 2014.