
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/322622423

RIPL: A Parallel Image Processing Language for FPGAs

Article in ACM Transactions on Reconfigurable Technology and Systems · March 2018

DOI: 10.1145/3180481

CITATIONS

0

READS

102

6 authors, including:

Some of the authors of this publication are also working on these related projects:

Approximate Computing View project

Embedded Platforms for Image Processing Systems View project

Robert Stewart

Heriot-Watt University

19 PUBLICATIONS 59 CITATIONS

SEE PROFILE

Kirsty Duncan

Heriot-Watt University

1 PUBLICATION 0 CITATIONS

SEE PROFILE

Greg Michaelson

Heriot-Watt University

177 PUBLICATIONS 1,153 CITATIONS

SEE PROFILE

Deepayan Bhowmik

University of Stirling

45 PUBLICATIONS 191 CITATIONS

SEE PROFILE

All content following this page was uploaded by Deepayan Bhowmik on 20 January 2018.

The user has requested enhancement of the downloaded file.

A

RIPL: A Parallel Image Processing Language for FPGAs

Robert Stewart, Mathematical and Computer Sciences, Heriot-Watt University
Kirsty Duncan, Mathematical and Computer Sciences, Heriot-Watt University
Greg Michaelson, Mathematical and Computer Sciences, Heriot-Watt University
Paulo Garcia, Engineering and Physical Sciences, Heriot-Watt University
Deepayan Bhowmik, Department of Computing, Sheffield Hallam University
Andrew Wallace, Engineering and Physical Sciences, Heriot-Watt University

Specialised FPGA implementations can deliver higher performance and greater power efficiency than embedded CPU or
GPU implementations for real time image processing. Programming challenges limit their wider use, because the implemen-
tation of FPGA architectures at the Register Transfer Level is time consuming and error prone. Existing software languages
supported by High Level Synthesis, whilst providing a productivity improvement, are too general purpose to generate ef-
ficient hardware without the use of hardware specific code optimisations. Such optimisations leak hardware details into
the abstractions that software languages are there to provide, and they require knowledge of FPGAs to generate efficient
hardware e.g. by using language pragmas to partition data structures across memory blocks.

This paper presents a thorough account of RIPL (the Rathlin Image Processing Language), a high level image processing
Domain Specific Language for FPGAs. We motivate its design, based on higher order algorithmic skeletons, with require-
ments from the image processing domain. RIPL’s skeletons suffice to elegantly describe image processing stencils, as well
as recursive algorithms with non-local random access patterns. At its core, RIPL employs a dataflow intermediate represen-
tation. We give a formal account of the compilation scheme from RIPL skeletons to static and cyclo-static dataflow models
to describe their data rates and static scheduling on FPGAs.

RIPL compares favourably compared to the Vivado HLS OpenCV library and C++ compiled with Vivado HLS. RIPL
achieves between 54 and 191 frames per second (FPS) at 100MHz for four synthetic benchmarks, faster than HLS OpenCV
in three cases. Two real world algorithms are implemented in RIPL, visual saliency and mean shift segmentation. For visual
saliency algorithm, RIPL achieves 71 FPS compared to optimised C++ at 28 FPS. RIPL is also concise, being 5x shorter than
C++ and 111x shorter than an equivalent direct dataflow implementation. For mean shift segmentation, RIPL achieves 7 FPS
compared to optimised C++ on 64 CPU cores at 1.1, and RIPL is 10x shorter than the direct dataflow FPGA implementation.

CCS Concepts: •Computing methodologies→ Image processing; •Computer systems organization→ Data flow ar-
chitectures; •Hardware→ Reconfigurable logic and FPGAs; •Software and its engineering→ Domain specific lan-
guages;

ACM Reference Format:
Robert Stewart, Kirsty Duncan, Greg Michaelson, Paulo Garcia, Deepayan Bhowmik, Andrew Wallace, 2018. RIPL: A
Parallel Image Processing Language for FPGAs. ACM Trans. Reconfig. Technol. Syst. V, N, Article A (January YYYY), 22
pages.
DOI: http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION
Video analytics has witnessed a major growth in applications including surveillance, vehicle auton-
omy and driver assistance, marketing, entertainment, intelligent domiciles, and medical diagnosis.
These domains need high performance, which can be achieved with parallel processing. Parallel
image processing is most commonly performed on multicore CPUs and GPUs. This is because

We acknowledge the support of the Engineering and Physical Research Council, grant references EP/K009931/1 (Pro-
grammable embedded platforms for remote and compute intensive image processing applications), EP/N014758/1 (The
Integration and Interaction of Multiple Mathematical Reasoning Processes) and EP/N028201/1 (Border Patrol: Improving
Smart Device Security through Type-Aware Systems Design).
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
c© YYYY ACM. 1936-7406/YYYY/01-ARTA $15.00
DOI: http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Reconfigurable Technology and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:2 Stewart et al.

the data parallel nature of image processing algorithms maps well to multicore architectures, and
because mature programming frameworks for them are widely adopted. Array based image process-
ing computations can be chunked into smaller single instruction multiple data (SIMD) work items,
then mapped across threads at each processor core and compiled to vectorised machine instructions
at each core. The implementations of array/image processing languages for CPUs and GPUs e.g.
[Chakravarty et al. 2011] often store image data into memory close to processor cores, where the
memories match complete images. Whilst compilers for these languages try to achieve good data
locality, cache misses can cost idle clock cycles, which is critical because bandwidth between a
processor and memory is often the most significant factor in determining overall performance [Wulf
and McKee 1995].

As the volume of image data collected from sensors grows, there is a strong need to process the
data close to the sensor, to considerably reduce the amount of data to be transferred between sensors
or to perform real-time processing, and to maximise the lifetime of non-powered energy sources.

Hence, two factors make FPGAs more suitable than CPUs and GPUs for real time image pro-
cessing:

(1) Predictability Real time image processing performance must be predictable, i.e. must not fluc-
tuate below a frames per second (FPS) threshold, because that may compromise algorithmic
robustness. Cache misses on fixed CPU/GPU architectures may result in dropped frames during
off-chip accesses. FPGAs are not restricted by fixed architectural choices, so FPGA programs do
not suffer from fetch-decode-execute instruction latencies or from cache misses.

(2) Power CPUs and GPUs consume far more energy than FPGAs. CPUs and GPUs lag signif-
icantly behind FPGAs when comparing the performance per watt for different classes of ap-
plications [Brodtkorb et al. 2010; Thomas et al. 2009]. For example, for an image processing
sliding window benchmark in [Fowers et al. 2012], the CPU required 130 watts, the GPU 145
watts, and the FPGA just 20 watts. This makes FPGAs most attractive for remote smart camera
deployments e.g. [Bhowmik et al. 2017], where access to power may be scarce.

Hardware resource availability is often the bottleneck when using FPGAs. The CPU and GPU
dynamic memory allocation approach for image storage is prohibitive for FPGA implementations,
because limited on-chip memory is limited — up to 68Mb of on chip block RAM (BRAM) [Xilinx
2015]. The FPGA on a $1.7k Xilinx Kintex 7 can accommodate 5 1024× 768 image buffers, whilst
the $475 Xilinx Zedboard cannot accommodate any [Stewart et al. 2016]. Newer generation FPGAs
such as the UltraScale+ offer improved memory density thanks to UltraRAM technology [Ahmad
et al. 2016], but still below the memory requirements of complex image processing pipelines. The
global shared memory model does not scale when used with hardware pipelines on FPGAs because
each computation in a pipeline would have to contend for the bandwidth to off-chip frame buffers
— only one access request can be performed in each clock cycle. New memory technologies such
as Hybrid Memory Cube (HMC) [Jeddeloh and Keeth 2012] and High-Bandwidth Memory (HBM)
[Marinissen and Zorian 2017] might alleviate this problem in the near future, thanks to much higher
bandwidth, if integration technologies are developed to enable their use across programming envi-
ronments. Regardless, efficient use of local memory remains a first order design concern. In contrast
to shared off-chip memory, on-chip block RAM (BRAM or UltraRAM) blocks are distributed across
the FPGA fabric, and with the right programming model, separate computations can efficiently be
assigned their own local contention-free image region buffers. This is the approach taken with RIPL.

Hardware Description Languages (HDLs) like Verilog [Thomas and Moorby 1996] are the com-
mon tool FPGA engineers use to specify hardware circuits. Designers think about their implemen-
tation in terms of connecting IP blocks, or if IP blocks required by an algorithm do not exist, very
low level building blocks such as gates, registers and multiplexers. Software engineers are seldom
familiar with HDLs concepts such as clocks, control signals and combinational/sequential logic,
limiting the dissemination of FPGA technology in the software industry.

To improve programmer productivity and to reduce hardware implementation errors, High Level
Synthesis (HLS) supports a subset of C/C++. Compiling these languages to FPGAs often suffer from

ACM Transactions on Reconfigurable Technology and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

RIPL: A Parallel Image Processing Language for FPGAs A:3

the drawback of being compiled to larger and slower FPGA configurations than those generated by
a structural description [Compton and Hauck 2002]. Knowledge of digital hardware is required
for generating high quality hardware from C/C++ with HLS [Schafer and Mahapatra 2014], e.g.
using pragmas to partition data structures across memory blocks, and these vary across different
tools [Nane et al. 2016]. Moreover, the dynamic heap memory model in C/C++ cannot be used on
FPGAs since there is no software operating system there to provide this automatic memory map
to off-chip memory. Therefore, new high level programming abstractions that generate efficient
structural descriptions are needed to encourage the wider adoption of FPGAs.

This paper makes the following contributions:

— A presentation of RIPL, a high level FPGA language with a collection of image processing skele-
tons for elementwise operations, sliding 1D/2D stencils, image reduction operations, recursive
algorithms and random access into 2D images and N dimensional arrays (Section 2).

— A formal presentation of RIPL’s dataflow intermediate representation (IR) and the FSM transi-
tions that describe the data rates and static scheduling behaviour of each skeleton (Section 3).

— A comparison of the expressiveness and performance of RIPL versus the Vivado HLS OpenCV
library using four synthetic benchmarks (Section 4.1). We also assess the performance of RIPL
with a visual saliency algorithm comprising stencils and a discrete wavelet transform, compared
to a C++ equivalent with Vivado HLS (Section 4.2). The expressivity of RIPL is demonstrated
with mean shift segmentation, which requires recursion and random access (Section 4.3).

— RIPL is validated with a Zynq based FPGA smart camera architecture (Section 4.4).

Section 5 describes related image processing languages for FPGAs, and we conclude in Sec-
tion 6.

2. RIPL DESIGN
2.1. RIPL Overview
RIPL is a DSL for describing FPGA designs for image processing algorithms at a very high level.
RIPL’s design is inspired by stream based functional programming languages e.g. [Mcgraw et al.
1985] and libraries e.g. [Kiselyov 2012], e.g. map and zipWith over streams. Such primitives are
sometimes called skeletons [Cole 1991], and this is how we refer to RIPL’s language primitives.
RIPL skeletons capture many low and medium level image signal processing operations such as 1
dimensional (1D) and 2D filters, image transformations, and global image reductions.

RIPL programs are non-terminating, repeatedly executed for every frame coming from a source.
RIPL therefore must be able to process frames, ideally at the rate of capture. To achieve this, hard-
ware pipelines are generated from RIPL programs to hide latency. Synthesising intermediate data
structures from high level languages on FPGAs would quickly use up all available on-chip BRAM
memory. Therefore, to maximise the use of BRAMs, RIPL skeletons are compiled to memory ef-
ficient data-localised functions, i.e. pixel-to-pixel or region-to-region actor functions, rather than
image-to-image actor functions, because the latter would incur high memory costs.

2.2. Image Processing with RIPL Skeletons

Data access pattern Non-overlapping image traversal Overlapping image traversal

point map, zipWith
1D/2D window stencil
image to image scale, scan, splitX, splitY
image reduction fold
random ND access fold

Table I: Skeletons Functionality

ACM Transactions on Reconfigurable Technology and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4 Stewart et al.

1 image2 = map image1 (\ p −> min 255 (p + 50)) ;
2
3 image3 = zipWith image1 image2 (\ p1 p2 −> p1 + p2 / 2) ;
4
5 image4 = zipWith image1 [maxPixe l . .]
6 (\ x maxPixe l −> i f x > (maxPixel −50) then p i x e l e l s e 0) ;
7
8 b i g g e r I m a g e = s c a l e (2 , 3) image1 ;
9

10 image5 = s t e n c i l (3 , 1) image1 (\ [.] (x , y) −> ([. −1] + [.] + [. + 1]) / 3) ;
11
12 image6 = s t e n c i l (3 , 3) image1
13 (\ p1 p2 p3 p4 p5 p6 p7 p8 p9 (x , y) −>
14 abs ((p1 + (2∗ p2) + p3) − (p7 + (2∗ p8) + p9))
15 + abs ((p3 + (2∗ p6) + p9) − (p1 + (2∗ p4) + p7))) ;

Fig. 1: Examples of image processing with stream based skeletons

imreadM,N : ColourType→ (M : Int)→ (N : Int)→ I(M,N)

mapM,N,A,B : I(M,N) → ([P]A → [P]B)→ I(M∗(B/A),N)

stencilM,N,A,B : I(M,N) → (A : Int,B : Int)→ ([P](A∗B) → (Int, Int)→ P)→ I(M,N)

zipWithM,N,A : I(M,N) → I(M,N) → ([P]A → [P]A → [P]A)→ I(M,N)

scaleM,N,A,B : (A : Int,B : Int)→ I(M,N) → I(M∗A,N∗B)

splitXM,N : Int→ I(M,N) → (I(M/2,N), I(M/2,N))
splitYM,N : Int→ I(M,N) → (I(M,N/2), I(M,N/2))
scanM,N : I(M,N) → Int→ (P → Int→ Int)→ I(M,N)

foldM,N : State→ I(M,N) → (State→ Element→ [Statement])→ State

fold : State→ Range → (State→ Index → [Statement])→ State

Fig. 2: RIPL skeletons

RIPL skeletons are reusable generalised image processing patterns, to which the user supplies
functions and values. Their distinctions in terms of data access patterns are shown in Table I, with
examples given in Fig. 1. Point operations e.g. with map computes a single pixel value from an
input pixel, and the processing does not depend on pixel neighbours (line 1 in Fig. 1). Examples
include arithmetic, logical and threshold operations. The zipWith skeleton (line 3) merges two data
structures, e.g. two images or combining an image with a stream of a constant value (line 5).

Local operations e.g. with stencil depends on small 1D or 2D sub-regions of neighbouring pixels,
e.g. convolution, filtering, smoothing, image enhancements, upsampling an image with scale (line 8)
with an interpolation filter with stencil, or horizontally splitting an image with splitX. For example,
splitX 2 img1 would return two images, where the first is constructed from columns 1, 2, 5, 6, 9,
10. . . and the second image has columns 3, 4, 7, 8. . . etc.

Processing images with RIPL’s stream based skeletons is visualised in Fig. 3. RIPL’s skeleton
API is shown in Fig. 2. The user supplies functions and values, using standard notation for function
type signatures, e.g. map is a skeleton that takes two arguments: an M × N image, and function
from a pixel to a pixel, and returns an M × N image. Images are read with imread in row major
order from left to right, then top to bottom. The type P represents pixel integer values. An image
I(M,N) is M pixels in width and N pixels in height.

ACM Transactions on Reconfigurable Technology and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

RIPL: A Parallel Image Processing Language for FPGAs A:5

map image f
f

stencil (3,1) image f
f

stencil (3,3) image f
f

x

y

zipWith image1 image2
f

splitX 2 image

splitY 1 image

scan image1 n f

f n

scale (2,2) image
x

y

Fig. 3: Visualising image processing with RIPL’s stream based skeletons

2.3. Image Stencils, Recursion and Random Access
2.3.1. Image Stencils. RIPL has a primitive for applying 1D and 2D stencils called stencil. It

captures a way to express many common image processing kernels such as a blur kernel and edge
detection. The stencil skeleton provides the user with the pixel values, and also the (x, y) position
of the centre pixel. Line 10 in Fig. 1 is an implementation of a 1D blur stencil. For 1D stencils, the
syntax [.] points to the indexed column wise position of that pixel. Indexing pixels either side is
done with +/-, e.g. [.-1] points to the pixel to the left of the [.] pixel. When applying a 2D kernel,
e.g. Sobel edge detection on line 12, the stencil (M,N) .. skeleton provides M ∗ N pixels to the
user defined function. When the user defined kernel is applied at the edges of the image, the closest
adjacent pixel is mirrored over the image’s edge. The (x, y) position argument can be used to make
a choice about how to compute a kernel result for each position, e.g. applying different kernels for
odd and even columns. This functionality is used for separating the low and high bands in a discrete
wavelet transform in Section 4.2.3:

img2 = s t e n c i l (3 , 1) img1 (\ [.] (x , y) −>
i f x % 2 == 0
then ([.] − (([. − 1] + [. + 1]) >> 1))
e l s e ([.] + (([. − 1] + [. + 1]) >> 2))) ;

2.3.2. Stateful Recursion. The fold skeleton is designed to meet algorithmic requirements that do
not fit into RIPL’s stream combinator model. This skeleton supports:

— Accumulating state whilst traversing N dimensional data structures including images.
— Random access into N dimensional data structures.
— Recursion with the while construct.

The fold skeleton takes three arguments: 1) an initial state, 2) an iterable data structure, and 3)
a user defined function that takes a state and the next element from the structure, then executes a
sequence of statements. The initial state can be a boolean or integer literal, a tuple of literals, or
N dimensional arrays created with genarray, where genarray(50,10) creates a 50 × 10 array. An
iterable data structure can either be a previously computed value, such as an image region, or an
iterable range with range, where range(10,5) provides the user defined function (i,j) loop counters.

Two examples using fold are:

ACM Transactions on Reconfigurable Technology and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6 Stewart et al.

img1 = imread Gray 512 512;

hist = fold genarray(256) img1 (\hist p -> hist[p]++);

sums = scan hist 0 (\elem state -> state+elem);

lut = map sums (\sum -> (sum*255)/(512*512));

img2 = map img1 (\p -> lut[p]);

out img2;

(a) Dataflow through RIPL code (b) Input (c) Output

Fig. 4: RIPL dataflow analysis of histogram normalisation

maxPixe l = f o l d 0 img1 (\maxP p i x e l −> maxP [0] = max maxP [0] p i x e l ;) ;
h i s t o g r a m = f o l d g e n a r r a y (2 5 6) image1 (\ h i s t p −> h i s t [p] + + ;) ;

The first computes the maximum pixel in an image. The user defined function that applies the max
binary operator is folded over image1, starting from initial state 0. The second example instantiates
a 1D array of size 256, to serve the purpose of a histogram data structure. The function folds over
the image1, incrementing the bin value positions according to each grayscale pixel value.

2.4. A Dataflow Intermediary for RIPL
RIPL programs are compiled to dataflow process networks (DPNs) [Lee and Parks 2002] as an
intermediate representation (IR) of image processing computations. A RIPL program is shown in
Fig. 4, which normalises an image’s grayscale distribution with its sum histogram. It reads image
pixels with imread, into a histogram with fold. A lookup table containing the scale factor is created
with scan and map. An outputted image is created from this lookup table. The arrows in Fig. 4a
show the dataflow analysis that the RIPL compiler performs, to generate pipelined FPGA designs.

RIPL’s dataflow IR comprises static and cyclo-static properties to support the required schedul-
ing behaviours of the RIPL skeletons. Synchronous dataflow (SDF) [Lee and Messerschmitt 1987]
actors produce and consume the same number of image pixels on every firing. Skeletons map
and zipWith are compiled to SDF actors. All other skeletons are compiled to cyclo static dataflow
(CSDF) [Bilsen et al. 1996] actors. They have cyclically changing state transition sequences, and
have internal actor state for pixel/line buffers to support 1D/2D stencil, scale, scan, splitX, splitY
and fold. The scheduling behaviour of each CSDF actor for RIPL skeletons is fixed, the pixel/line
buffer sizes and the functions to produce data output values are derived from the user’s RIPL code.
The dataflow IR exploits FPGA parallelism and good data locality:

Parallelism. The dataflow model of independent computational blocks are a natural fit for parallel
FPGA circuits, to process infinite image streams. Parallelism is implicit in RIPL, without parallel
primitives or pragmas. Generating hardware pipelines hides latency. The RIPL compiler preserves
lazy evaluation in the tail of image streams to exploit pipelined parallelism. Otherwise, actors would
consume more data than needed to compute their function, which would reduce parallelism and
increase memory costs for intermediate storage. There are two forms of automatic RIPL parallelism:

— Temporal parallelism This form of parallelism is introduced when image data is streamed
through a pipeline of producer-consumer kernels, e.g. the output from a stencil is the input to
a zipWith operation.

— Spatial parallelism RIPL produces computational code inside actors to exploit spatial parallel
FPGA logic. Parallelism is exploited within expressions in user defined functions, in the absence
of dataflow dependencies within expressions.

ACM Transactions on Reconfigurable Technology and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

RIPL: A Parallel Image Processing Language for FPGAs A:7

Data locality. There is no global shared memory in the dataflow model. Instead, the dataflow
memory model is that of isolated memory within actors, where computations and their data are co-
located. This maps naturally to on-chip contention-free (i.e. parallel accesses) BRAM memory and
registers distributed across FPGA fabric.

3. RIPL IMPLEMENTATION
Each RIPL skeleton is compiled to a dataflow actor that encapsulates a Finite State Machine (FSM),
responsible for the required scheduling behaviour, and corresponding datapath. These actors are
connected into deep parallel pipelines as multiple skeletons are used in larger programs. RIPL
enforces single assignment semantics, i.e. a variable is assigned a value with a skeleton instance
exactly once. This makes data dependencies easy to extract to dataflow wiring, to facilitate the gen-
eration of hardware pipelines. The RIPL compiler is open source1, and the RIPL, CAL and C++
implementations for the evaluation in Section 4 are available as an open dataset [Stewart 2018].

3.1. Skeletons to Dataflow FSMs
3.1.1. Dataflow Semantics for RIPL Skeletons. The compilation of each RIPL skeleton is based

on a framework for describing rule based dataflow actors [Janneck 2003]. It describes the data rates
and static scheduling for each RIPL skeleton in terms of transitions on an abstract machine, which
is later compiled to hardware specified in Verilog (Section 3.2). An actor is a sequential process,
communicating values by transitioning between states in the actor’s FSM. The state machine re-
ceives tokens and reacts to them, possibly entering another state, and possibly producing tokens. A
state transition from σ to σ

′
consumes a tuple s of token sequences and produces a tuple s′ of to-

ken sequences. An actor has a set of m input ports, written Sm, and n output ports, written Sn. The
value m is dictated by the arity of the corresponding RIPL skeleton, e.g. zipWith takes two images as
inputs and hence m is 2 for this skeleton. If the output of one skeleton is used as an input argument
of multiple other skeletons, then those actors are connected to the same input port and the stream is
automatically duplicated into each connection.

Let U be the universe of all values, and S = U∗ be the set of all finite sequences in U . A tuple
s ∈ Sm contains one or more token sequences consumed from p ports, where 1 6 p 6 m. We write
sp

A to describe a token sequence of length A at port p. For example, a transition from σ to σ
′

that
consumes sequences from input ports 1 and 2 of lengths A and B, to produce a sequence of length
C to an output port 1 is written as:

σ
s1

A×s2
B 7→s′1C−−−−−−−−→ σ

′

For some scheduling phases of a RIPL skeleton, a transition rule may not read from or write to any
ports. We use ∅ as port descriptions for these transitions. To support the stateful RIPL skeletons such
as stencil, internal actor state is needed. We add S as a notation to transition rules for internal actor
state. State transition examples are written as follows:

〈σ0,S〉
s1

3 7→s′16−−−−−→ 〈σ1,S ′〉
This transition moves from FSM state σ0 with a set of internal variable states in S, to FSM state
σ1 with internal variable states S ′, and consumes three input tokens from input port 1 and emits six
output tokens to output port 1. In the mapping from RIPL to dataflow graphs, the vertices (actors)
represent image operations and the edges (wires) represent dataflow between composed skeletons.

3.1.2. Compilation scheme.

Pointwise skeletons. The skeleton to dataflow FSMs compilation scheme is in Fig. 5. Each skele-
ton is compiled to an actor with one or more transitions. The map and zipWith skeletons are each

1https://github.com/robstewart57/ripl

ACM Transactions on Reconfigurable Technology and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8 Stewart et al.

JmapM,N,A,B fK =

〈σ0, {}〉
f : s1

A 7→s′1B−−−−−−−−→ 〈σ0, {}〉 (map stream)

JzipWithM,N,A fK =

〈σ0, {}〉
f : s1

A×s2
A 7→s′1A−−−−−−−−−−−→ 〈σ0, {}〉 (zipWith stream)

Jfold state fK =

〈σ0, state〉
f : s1

1 7→∅−−−−−−→ 〈σ1,S〉 (fold init state)

〈σ1,S〉
f : s1

1 7→∅−−−−−−→
〈
σ1,S′

〉
(fold accum)

〈σ1,S〉
∅7→s′11−−−−→ 〈σ2,S〉 (fold output)

〈σ2,S〉
∅7→∅−−−→ 〈σ0, state〉 (fold reset)

JscanM,N state fK =

〈σ0, state〉
f : s1

1 7→∅−−−−−−→ 〈σ1,S〉 (scan init state)

〈σ1,S〉
f : s1

1 7→s′11−−−−−−−→
〈
σ1,S′

〉
(scan output)

〈σ1,S〉
∅7→∅−−−→ 〈σ0, state〉 (scan reset)

JsplitXM,N,AK =

〈σ0, {}〉
s1

A 7→s′1A−−−−−−→ 〈σ1, {}〉 (splitX output1)

〈σ1, {}〉
s1

A 7→s′2A−−−−−−→ 〈σ0, {}〉 (splitX output2)

JsplitYM,N,AK =

〈σ0, {}〉
s1

A∗M 7→s′1A∗M−−−−−−−−−−→ 〈σ1, {}〉 (splitX output1)

〈σ1, {}〉
s1

A∗M 7→s′2A∗M−−−−−−−−−−→ 〈σ0, {}〉 (splitX output2)

JstencilM,N,A (A, 1) fK =

〈σ0, {}〉
s1

(A−1) 7→∅−−−−−−−→ 〈σ1,S〉 (stencil1D pop buffer)
〈σ1,S〉

f : s1
1 7→s′11−−−−−−−→

〈
σ1,S′

〉
(stencil1D stream)

JstencilM,N,A,B (A,B) kK =

〈σ0, {}〉
s1

((B−1)∗M+A) 7→∅−−−−−−−−−−−−−→ 〈σ1,S〉
(stencil2D pop buffer)

〈σ1,S〉
k : s1

1 7→s′11−−−−−−−→
〈
σ2,S′

〉
(stencil2D top left)

〈σ2,S〉
k : s1

(M−2) 7→s′1(M−2)
−−−−−−−−−−−−−−−→

〈
σ3,S′

〉
(stencil2D top row)

〈σ3,S〉
k : s1

1 7→s′11−−−−−−−→
〈
σ4,S′

〉
(stencil2D top right)

〈σ4,S〉
k : s1

1 7→s′11−−−−−−−→
〈
σ5,S′

〉
(stencil2D mid left)

〈σ5,S〉
k : s1

(M−2) 7→s′1(M−2)
−−−−−−−−−−−−−−−→

〈
σ6,S′

〉
(stencil2D mid)

〈σ6,S〉
k : s1

1 7→s′11−−−−−−−→
〈
σ7,S′

〉
(stencil2D mid right)

〈σ7,S〉
k : s1

1 7→s′11−−−−−−−→
〈
σ8,S′

〉
(stencil2D bottom left)

〈σ8,S〉
k : s1

(N−2) 7→s′1(M−2)
−−−−−−−−−−−−−−−→

〈
σ9,S′

〉
(stencil2D bottom row)

〈σ9,S〉
k : s1

1 7→s′11−−−−−−−→ 〈σ0, {}〉 (stencil2D bottom right)

JscaleM,N,A,B K =

〈σ0, {}〉
s1

A 7→s′1M∗A−−−−−−−−→ 〈σ1,S〉 (scale pop buffer)

〈σ1,S〉
∅7→s′1

M∗(B−1)−−−−−−−−−−→ 〈σ1,S〉 (scale output row)

〈σ1,S〉
∅7→∅−−−→ 〈σ0, {}〉 (scale reset)

Fig. 5: Compilation scheme from RIPL skeletons to actor FSMs

compiled to a single transition rule in an SDF actor with no internal state, i.e. transition rules
(map stream) and (zipWith stream) map from an empty internal state {} to an empty internal
state, and the output values from these transitions are determined by the user defined function f .

Image Transforms. The scale skeleton is compiled to three transition rules. The
(scale pop buffer) consumes a row and outputs each pixel in turn by the width scale factor
M . The (scale output row) outputs this scaled row N − 1 times, where N is the height scale
factor, then the FSM is reset to σ0 with transition (scale reset). The scan skeleton is compiled to
three transition rules. The (scan init state) rule initialises the actor buffer with the user defined
initial state. The (scan output) rule performs the accumulation operation, outputting intermediate
values until a data structure is consumed, then (scan reset) reset back to the initial state. The
splitX skeleton has two rules, one each for outputting to output ports 1 and 2. Take splitX 2 image,
(splitX output1) consumes 2 tokens then outputs them to output port 1, then (splitX output2) does
the same, outputting to output port 2. This alternating schedule repeats forever. The same FSM
schedule is used for splitY, this time consuming entire rows in each transition.

Stencils. A 1D image blur stencil in Fig. 6 demonstrates how the RIPL compiler minimises the
memory requirements of an FPGA. The compiler infers the range of the indexed pixel either side
of [.], which in this case is 3 pixels between [. − 1] and [. + 1]. The actor contains a 3 element
array that acts as a circular buffer, which is partially filled with 2 elements by firing rule (sten-
cil1D pop buffer) to reach state σ1 and a mid position pointer is set to 1. Each time the (sten-
cil1D stream) rule is fired, the next incoming token is pushed to the front of the buffer, and the

ACM Transactions on Reconfigurable Technology and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

RIPL: A Parallel Image Processing Language for FPGAs A:9

index

0

1

2

[.]

+1 -1

midpoint

new pixel

output pixel

stencil (3,1) image (\[.] (x,y) -> ([.-1] + [.] + [.+1]) / 3)

Fig. 6: Circular buffer to support stencil (3,1) .. for a 1D blur kernel

RIPL function is computed on the buffer’s contents as the output token value, and the mid position
pointer is rotated forward one position. This stencil actor needs memory for just four pixels, three
element circular buffer and the incoming token, to apply a 1D blur over an entire image.

The stencil skeleton for 1D stencils is compiled to two transition rules. Internal state for 1D sten-
cils is populated with the (stencil1D pop buffer) rule before transitioning to stream based rules
(stencil1D stream). The stencil skeleton for 2D stencils is compiled to 10 transition rules. The
(stencil2D populate buffer) rule consumes the first two rows and A pixels required to start pro-
cessing an image from the top left corner, i.e. by consuming ((B − 1) ∗M + A) tokens where A
and B are the width and height of the kernel window and M is the width of the entire image. The
remaining 9 rules carry out three tasks: 1) consume one pixel into internal state, 2) compute the
application of the user defined 2D kernel function f on the window around the central pixel, and 3)
output that computed value. They are defined as separate transition rules to index the internal state
to handle boundary conditions at image edges, where the edge pixel is mirrored over the boundary.

Reductions and Stateful Recursion. The fold skeleton is compiled to four transition rules. Internal
actor state is persisted throughout the consumption of each input data structure, e.g. an image region.
The internal state buffer is initialised with the user defined state value, before being modified each
firing with (fold accum). Once an entire data structure is consumed, the (fold output) rule begins
firing to output the final state. The (fold reset) resets the internal actor buffer to the initial state and
readies the actor to consume the next data structure.

zipWith image1 image2 (λp1 p2→ (p1 + p2) / 2)

〈σ0, {}〉
[3]×[43] 7→[23]−−−−−−−−→ 〈σ0, {}〉 (zipWith stream)

〈σ0, {}〉
[4]×[8] 7→[6]−−−−−−−→ 〈σ0, {}〉 (zipWith stream)

〈σ0, {}〉
[16]×[8] 7→[12]−−−−−−−−→ 〈σ0, {}〉 (zipWith stream)

〈σ0, {}〉
[62]×[48] 7→[55]−−−−−−−−−→ 〈σ0, {}〉 (zipWith stream)

〈σ0, {}〉
[30]×[10] 7→[20]−−−−−−−−−→ 〈σ0, {}〉 (zipWith stream)

〈σ0, {}〉
[12]×[92] 7→[52]−−−−−−−−−→ 〈σ0, {}〉 (zipWith stream)

fold 0 image1 (λmaxPixel pixel→
maxPixel[0] = max maxPixel[0] nextPixel)

〈σ0, 0〉
[8] 7→∅−−−−→ 〈σ1, 8〉 (fold init state)

〈σ1, 8〉
[5] 7→∅−−−−→ 〈σ1, 8〉 (fold accum)

〈σ1, 8〉
[9] 7→∅−−−−→ 〈σ1, 9〉 (fold accum)

〈σ1, 9〉
[16] 7→∅−−−−→ 〈σ1, 16〉 (fold accum)

〈σ1, 16〉 ∅7→[16]−−−−→ 〈σ2, 0〉 (fold output)
〈σ2, 0〉

∅7→∅−−−→ 〈σ0, 0〉 (fold reset)

Fig. 7: RIPL skeleton transition execution examples

3.1.3. Example transitions. The execution of RIPL skeletons is now given showing sequences of
FSM rule firings for two examples, shown in Fig. 7. The first example combines two images with
zipWith, with the mean of six pixels at the same position in each image. The second example uses
fold to return the maximum pixel value in a 2 × 2 image region, by repeatedly folding the current
highest pixel value through the image until all pixels have been consumed. The initial internal state
takes the second argument to the skeleton, in this case 0. This is used to retain the largest current
pixel value whilst consuming, then immediately discarding, each pixel from the image. Once all

ACM Transactions on Reconfigurable Technology and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10 Stewart et al.

Benchmark RIPL HLS OpenCV
DSP BRAM LUTs FPS DSP BRAM LUTs FPS

1 Image brighten 0 0 (0%) 118 (0%) 191 0 0 880 (1%) 126
2 Sobel 2D edge detection 0 1 (0%) 12273 (23%) 54 0 3 (1%) 1675 (3%) 125
3 Threshold with max pixel 0 64 (45%) 280 (0%) 191 0 64 (45%) 9172 (1%) 75
4 Histogram normalisation 0 64 (45%) 799 (1%) 191 1 2 (1%) 7265 (13%) 126

Table II: Micro Benchmark Results

pixels have been consumed, the internal state is outputted with (fold output), before the FSM is
reset to 〈σ0, 0〉 for the next image frame.

3.2. Dataflow to FPGAs
The CAL dataflow language [Eker and Janneck 2003] is the target language of RIPL’s dataflow
IR backend. There are three phases to compile RIPL to FPGAs: 1) compiling RIPL to CAL, 2)
compiling the dataflow graph to Verilog, and 3) synthesising the Verilog to a bitfile. The dataflow
intermediary provides optimisation opportunities, e.g. [Stewart et al. 2017], before being compiled
to hardware components like registers, memories and actor communication handshake protocols.
Xronos [Bezati 2015], an FPGA backend plugin for the Orcc compiler, maps each actor into a
language independent model (LIM) and connects each LIM block to a clock. Xronos is designed
to support dynamic asynchronous dataflow, and therefore adds a FIFO based data communication
mechanism to support token passing. Decoupling actor communication via these FIFOs results in 2
clock cycles latency per pixel, i.e. for a 512x512 image at 100MHz the highest theoretical perfor-
mance is 100000000

512×512×2 = 191 FPS for a single actor performing elementwise operations. The Xilinx
OpenForge compiler allocates hardware: memory, arithmetic datapaths, registers and actor intercon-
nects, then generates HDL modules for each actor and for defining dataflow connectivity between
these modules. This HDL code is synthesised and deployed to FPGAs using commercial tools.

RIPL’s code generation strategy maximises spatial parallelism to maximise the number of opera-
tions per clock cycle. By default, OpenForge uses BRAM blocks for CAL arrays beyond a certain
size. Our experiments with OpenForge show that a BRAM block is instantiated for CAL arrays
requiring more than 2KB of storage, e.g. about a 4 × 512 row buffer at 8 bits per pixel. To use a
BRAM in the combinational setting, at most two read/write accesses to a CAL array may occur.
When more than 2 reads/writes are performed on the same array in an actor’s action, OpenForge
instead instantiates LUTs for CAL arrays with 3+ reads/writes to preserve zero latency accesses.

4. EVALUATION
4.1. RIPL versus HLS OpenCV

4.1.1. Expressivitiy. Vivado HLS OpenCV [Stephen Neuendorffer and Wang 2015] is a collec-
tion of 34 predefined functions, a subset of the 2,500+ algorithm functions in OpenCV for CPUs.
An example is in Fig. 8. In contrast, RIPL provides algorithmic templates, whose functionality is
entirely user defined. For example, the HLS OpenCV hls::Max function for combining two images
can be expressed with RIPL’s zipWith. HLS OpenCV’s hls::Filter2D is a convolution filter. RIPL’s
stencil supports any stencil function, including convolution. This demonstrates the inflexibility of
libraries of fixed kernels. Moreover, the library approach prohibits optimisations across library call
boundaries. Other expressivity differences are:

— Sharing Since the Mat type is just a synonym for hls::stream in the HLS OpenCV library,
a hls::Duplicate call must be performed on an image to ensure that the underlying data stream
isn’t consumed in one program location to deadlock in another location. RIPL supports automatic
image sharing, where an image is processed in two places in a program.

ACM Transactions on Reconfigurable Technology and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

RIPL: A Parallel Image Processing Language for FPGAs A:11

1 hls::Mat<512,512, HLS_8UC1> img_0(rows,cols);
2 hls::Mat<512,512, HLS_8UC1> img_1(rows,cols);
3 hls::Mat<512,512, HLS_8UC1> img_2(rows,cols);
4 hls::Mat<512,512, HLS_8UC1> img_3(rows,cols);
5
6 // explicit depth for img_2 to prevent deadlock
7 #pragma HLS stream depth=262144 variable=img_2.data_stream
8
9 // convert AXI4 stream data to hls::mat format

10 hls::AXIvideo2Mat(INPUT_STREAM1, img_0);
11
12 // duplicate the img_0 stream
13 hls::Duplicate(img_0,img_1,img_2);
14
15 // find the maximum pixel of img_1 duplicate
16 int maxP, minP;
17 hls::Point p1,p2;
18 hls::MinMaxLoc(img_1,&minP,&maxP,p1,p2);
19
20 // threshold the img_2 duplicate using the max pixel - 50
21 int threshold = maxP - 50;
22 hls::Threshold(img_2,img_3,threshold,255,HLS_THRESH_TOZERO);

Fig. 8: Thresholding with a maximum pixel value in HLS OpenCV

— Image shape inference OpenCV programming requires explicit dimension in image declara-
tions, e.g. hls :: Mat〈512, 512, HLS 8UC1〉 defines a 512×512 single channel image, using
8 unsigned bits per pixel. In contrast, the RIPL compiler infers the dimension of every intermedi-
ate image, by following dimension transformations performed by skeletons through the implicit
dataflow paths starting from imread, where dimensions are specified.

— Parallel pipelines Pipelining in RIPL is automatic, e.g. streaming the result of a map in
a stencil will generate a hardware pipeline. In HLS OpenCV, the programmer must specify
#pragma HLS dataflow above the function calls intended to be pipelined over the image stream.

4.1.2. Performance Comparison. We use four benchmarks to compare the space performance of
RIPL and OpenCV compiled to FPGAs using Vivado HLS [Xilinx 2017b]. Programs are compiled
for the Xilinx Zedboard XC7Z020 for 512×512 single channel images. The post place-and-route
results in Table II are taken from [Stewart et al. 2016]. To quantify computational image processing
performance, we use RTL simulation to calculate latency in clock cycles per 512 × 512 frame and
report frames per second (FPS) according to the clock frequency. All experiments were performed
using a 100MHz clock, which is the default frequency for Vivado HLS, and we did not perform any
speed optimisations on Vivado HLS or RIPL-generated code.

RIPL achieves a higher FPS performance compared to HLS OpenCV, achieving 191 FPS for
image brightening, max-thresholding and histogram normalisation. This is the maximum achievable
FPS result for RIPL at 100MHz, i.e. 100000000

512×512×2 , due to FIFO based token passing latency introduced
by RIPL’s FPGA backend. OpenCV achieves 126, 75 and 126 FPS respectively. HLS OpenCV
outperforms RIPL for a Sobel 2D edge detection, 125 FPS versus 54. This may be caused by the
amount of runtime scheduling caused by the 10 dataflow transition rules in the implementation of
stencil (Section 3.1.1) to handle mirroring pixels over boundaries. Reducing runtime scheduling by
reducing the number of transition rules for stencil is future work. Resource utilisation is similar,
except for Sobel where RIPL uses 2 BRAM blocks less and a lot more LUTs (23%). Because
CAL code generated by RIPL implements a combinational filter (Section 3.2), accessing up to nine
different data at the same time to compute Sobel, OpenForge is unable to map the data into BRAMs,
which are limited to two simultaneous read/writes. Hence, data storage is mapped to LUTs.

ACM Transactions on Reconfigurable Technology and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12 Stewart et al.

HLS OpenCV uses less BRAM than RIPL for histogram normalisation. The dataflow graph gen-
erated from RIPL computes two passes of the image, one to compute the histogram and a second to
normalise the colour distribution with it. In contrast, hls::EqualizeHist() normalises a frame using a
histogram computed for the previous frame. This approximation optimisation means that BRAM is
not needed to store an image for the second pass to normalise with the computed histogram.

4.2. Higher Level Case Study 1: Visual Saliency
This section uses a pyramidal visual saliency algorithm to compare the performance of RIPL ver-
sus variants of a C++ equivalent implementation compiled with Vivado HLS. The algorithm com-
prises three components: 1) an average filter (Section 4.2.1), 2) a discrete wavelete transform (Sec-
tion 4.2.2), and 3) a weighted linear summation of wavelet subbands (Section 4.2.3).

4.2.1. Low Level Image Processing: Average Filtering. Average filtering is one of the most com-
monly used filtering methods used in image pre-processing that helps to reduce the amount of in-
tensity variation between a pixel and its neighbours. Each pixel value is replaced with a mean of
its neighbours including the pixel itself and commonly realised by convolving with a predefined
mask [González and Woods 1992]. An equation for such filters is expressed as below:

I ′ = W ∗ I =
N∑

n=1

M∑
m=1

w(m,n) · I(m,n), (1)

where I is the input image of size M ×N , I ′ is filtered image, W is the filter kernel, m and n are
the pixel locations and ∗ is a convolution operator. The process is repeated using a sliding window
to receive filter output for entire image. Average filtering with filter coefficients w(m,n) = 1

9 can
be implemented as a RIPL function using the stencil skeleton:

l e t a v e r a g e F i l t e r image =
b l u r r e d I m a g e = s t e n c i l (3 , 3) image

(\ p1 p2 p3 p4 p5 p6 p7 p8 p9 (x , y) −> (p1+p2+p3+p4+p5+p6+p7+p8+p9) / 9) ;
b l u r r e d I m a g e ;

4.2.2. Intermediate Level Image Processing: Multi Resolution 2D Wavelet Transform. The dis-
crete wavelet transform (DWT) is used for many image processing applications, e.g. compression,
de-noising and texture analysis. Multi-orientation and multi resolution analysis using DWT closely
resembles human vision. DWT decomposes an image into independent frequency subbands of mul-
tiple orientations at multiple scales demonstrating details and structures. Due to its popularity in the
JPEG2000 image compression standard [Taubman and Marcellin 2012], we use the 5/3 wavelet ker-
nel as our RIPL example, using a lower complexity lifting-based approach. The filters are realised
by decomposing the signal into lifting steps by factoring its polyphase matrix using the Euclidean
factoring algorithm [Daubechies and Sweldens 1998]. The input signal, lowpass subband signal, and
highpass subband signal are denoted a[n], s[n] and d[n] respectively. DWT is expressed in Eq. (2),
where s0[n] , a[2n] and d0[n] , a[2n+ 1]:

5/3
{
d[n] = d0[n]− 1

2 (s0[n+ 1] + s0[n]),
s[n] = s0[n] + 1

4 (d[n] + d[n− 1]). (2)

A 2D DWT is computed by separately filtering rows and columns leading to one approximation
(LL) subband & three detailed subbands in the decomposition level i ∈ N1 emphasising verti-
cal (LHi), horizontal (HLi) and diagonal (HHi) contrasts within an image, portraying prominent
edges in various orientations as shown in Fig. 9. This process is repeated on the LL subband to get
multiresolution decomposition. The 5/3 DWT is implemented as a RIPL function in Fig. 10. The L
and H components of the input image are computed with stencil on line 2 and them separated to
L and H using splitX on line 5. The LL, LH , HL and HH sub-components are computed in the
vertical direction in the same fashion on lines 6 and 8, and separated on lines 10 and 11.

ACM Transactions on Reconfigurable Technology and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

RIPL: A Parallel Image Processing Language for FPGAs A:13

(a) DWT illustration (b) LL1 (c) LH1 (d) HL1 (e) HH1

Fig. 9: An example of multiresolution wavelet decomposition, where (b), (c), (d) and (e) are level 1
approximation (LL1), vertical (LH1), horizontal (HL1) and diagonal (HH1) subbands.

1 l e t wavele tDecompose image =
2 img2 = s t e n c i l (3 , 1) image (\ [.] (x , y) −>
3 i f x % 2 == 0 then ([.] − (([. − 1] + [. + 1]) >> 1))
4 e l s e ([.] + (([. − 1] + [. + 1]) >> 2))) ;
5 (L ,H) = s p l i t X 1 img2 ;
6 img3 = s t e n c i l (3 , 3) L (\ p1 p2 p3 p4 p5 p6 p7 p8 p9 (x , y) −>
7 i f y % 2 == 0 then (p2 + p6) >> 2 e l s e (p2 − p6) >> 1) ;
8 img4 = s t e n c i l (3 , 3) H (\ p1 p2 p3 p4 p5 p6 p7 p8 p9 (x , y) −>
9 i f y % 2 == 0 then (p2 + p6) >> 2 e l s e (p2 − p6) >> 1) ;

10 (LL , LH) = s p l i t Y 1 img3 ;
11 (HL,HH) = s p l i t Y 1 img4 ;
12 (LL , LH, HL,HH) ;

Fig. 10: 5/3 Discrete Wavelet Transform in RIPL

Fig. 11: Example saliency maps computed by the original model: row 1 is the original image, and
row 2 shows the thresholded saliency map generated by our implementation.

4.2.3. High Level Image Processing: Visual Saliency Modelling. The human visual system is sen-
sitive to many salient features that lead to attention being drawn towards specific regions in a scene.
A visual attention model identifies the salient regions in an image as perceived by human vision
and has applications in many domains including computer vision [Borji and Itti 2013]. We have
adopted the visual attention model from in [Bhowmik et al. 2016], which demonstrates superior
performances in joint saliency detection and low computational complexity. The algorithm uses the
5/3 DWT in Section 4.2.2 as its core decomposition. Example algorithm results are shown in Fig. 11.

DWT captures horizontal, vertical and diagonal contrasts within an image, respectively, portray-
ing prominent edges in various orientations. A complete visual saliency RIPL implementation is
shown in Fig. 12, which uses the waveletDecompose RIPL function from Fig. 10. It processes the
Y channel of the Y UV colour spectral space, because the this luminance channel exhibits promi-
nent intensity variations and has significant structure information of the scene and carries maximum

ACM Transactions on Reconfigurable Technology and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14 Stewart et al.

1 /∗ RIPL f u n c t i o n t h a t b l u r s a t i l e t h e n s c a l e s i t up ∗ /
2 l e t b l u r R e s i z e r e g i o n s c a l e F a c t o r =
3 b l u r r e d = a v e r a g e F i l t e r r e g i o n ; /∗ f rom S e c t i o n 4.2.1 ∗ /
4 r e s i z e d = s c a l e (s c a l e F a c t o r , s c a l e F a c t o r) b l u r r e d ;
5 r e s i z e d ;
6
7 /∗ The RIPL program s t a r t s he re ∗ /
8 image1 = imread Gray 512 512 ;
9

10 /∗ 3 l e v e l s o f d e c o m p o s i t i o n u s i n g t h e RIPL f u n c t i o n from Fig. 10 ∗ /
11 (LL1 , LH1 , HL1 , HH1) = wavele tDecompose image1 ;
12 (LL2 , LH2 , HL2 , HH2) = wavele tDecompose LL1 ;
13 (LL3 , LH3 , HL3 , HH3) = wavele tDecompose LL2 ;
14
15 /∗ b l u r and s c a l e w a v e l e t q u a r t i l e s ∗ /
16 scale LH1 = b l u r R e s i z e LH1 2 ; scale HL1 = b l u r R e s i z e HL1 2 ;
17 scale HH1 = b l u r R e s i z e HH1 2 ; scale LH2 = b l u r R e s i z e LH2 4 ;
18 scale HL2 = b l u r R e s i z e HL2 4 ; scale HH2 = b l u r R e s i z e HH2 4 ;
19 scale LH3 = b l u r R e s i z e LH3 8 ; scale HL3 = b l u r R e s i z e HL3 8 ;
20 scale HH3 = b l u r R e s i z e HH3 8 ;
21
22 mapVer = zipWith scale LH1 scale LH2 scale LH3 (\ x y z −> 4∗x+8∗y+4∗ z) ;
23 mapHor = zipWith scale HL1 scale HL2 scale HL3 (\ x y z −> 4∗x+8∗y+4∗ z) ;
24 mapDia = zipWith scale HH1 scale HH2 scale HH3 (\ x y z −> 4∗x+8∗y+4∗ z) ;
25 mapFina l = zipWith mapVer mapHor mapDia (\ x y z −> x + y + z) ;
26 f i n a l T h r e s h o l d e d = map mapFina l (\ x −> i f x > 150 then x e l s e 0) ;
27 out f i n a l T h r e s h o l d e d ;

Fig. 12: Visual saliency in RIPL

weight in the original algorithm. The RIPL implementation applies three levels of wavelet decom-
position. Due to the dyadic nature of the multi-resolution wavelet transform, the image resolutions
are decreased after each wavelet decomposition iteration from lines 11 to 13. This is useful in cap-
turing both short and long structural information at different scales. The blurResize function on line
2 is called on lines 16 to 20, which applies an average filter to each subband to remove unnecessary
finer details, then scales up the result back to a full resolution output. The interpolated subband fea-
ture maps, lhi (horizontal), hli (vertical) and hhi (diagonal), i ∈ N1, for all decomposition levels L
1 to 3 are combined by a weighted linear summation as illustrated in Eq. (3):

lh1···LY
=

L∑
i=1

lhi ∗ τi hl1···LY
=

L∑
i=1

hli ∗ τi, hh1···LY
=

L∑
i=1

hhi ∗ τi (3)

where τi is the subband weighting parameter and lh1···LY
, hl1···LY

and hh1···LY
are the subband

feature maps for the spectral channel Y , on lines 22 to 24.
Lastly SY , the saliency map for the Y spectral channel, is on line 25 and is computed as below,

before being thresholded with a binary threshold to emphasise salient regions:

SY = lhY + hlY + hhY . (4)

4.2.4. Visual Saliency Results.

RIPL versus C++ for hardware. The RIPL visual saliency implementation is compared with vari-
ants of an equivalent C++ implementation. The C++ implementation separates the three algorithmic
components into C++ functions, i.e. the blur filter, the FWT and the weighted linear summation.
C++ templates are used to size array arguments to these functions and these arrays are updated in-

ACM Transactions on Reconfigurable Technology and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

RIPL: A Parallel Image Processing Language for FPGAs A:15

FPS unroll BRAM DSP FF LUT
Benchmark factor (/2060) (/2800) (/607200) (/303600)

RIPL 71 - 1% 0% 2% 18%
C++ 21 - 90% 1% 1% 1%
C++ with array reuse 23 4 12% 1% 1% 1%
C++ with array reuse 24 8 12% 2% 1% 6%
C++ with array reuse 28 16 12% 4% 3% 12%
C++ with array reuse 28 32 12% 9% 6% 23%
C++ with array reuse 27 64 12% 18% 45% 60%
C++ with array reuse 25 96 12% 25% 94% (103%)

Table III: Visual saliency on a Virtex 7

place in the body of each function. These template parameters are propagated through the program
at compile time from 512 and 512 height and width image dimensions in the test bench, e.g.

template<i n t h , i n t w> void b l u r F i l t e r (u c h a r image [h] [w]) ;

The C++ variants are:

(1) C++ with array reuse. Each function contains declared 2D arrays with element values initialised
to zero, e.g. lowBand[h][w/2] and highBand[h][w/2] are declared in the waveletDecompose
function, which can both be populated in a single loop statement to separate the low and high
bands in one iteration over the image. This version contains 27 arrays.

(2) C++ with extensive reuse of arrays. This version reuses some arrays for different purposes.
Refactoring has been done manually, e.g. renaming lowBand[h][w/2] to band[h][w/2] and pop-
ulating it with low band FWT values to compute LL and LH, before re-populating it with
high band values to compute HL and HH. This approach also sequentialises the summation
of weighted LH, HL and HH contrasts because one array is repopulated with LH, then HL, then
HH, after each sum accumulation into an output array. This version contains 13 arrays.

(3) C++ with array reuse and loop unrolling. Loop unrolling with #pragma AP unroll is employed
to create multiple parallel independent operations from originally sequential loops. This loop
unrolling pragma is used in 8 places, and the unrolling factor is varied to measure the trade off
between space and latency.

Hardware designs for RIPL and C++ are clocked at 100MHz for the Virtex 7 VC707 and syn-
thesised using Vivado 2016.2. Results are displayed in Table III. Vivado HLS does not apply fusion
optimisations to eliminate intermediate for loops over successive arrays, hence the 90% BRAM use
for 27 image buffers. Manually eliminating intermediate arrays down to 13 reduces BRAM use to
12%, which runs at 23 FPS. Unrolling the 8 for loops in the C++ code upto an unroll factor of 32
increases FPS to 28, as well as increasing DSP, FF and LUT resource use. FPS performance de-
grades as more space is needed with a 64 unroll factor, and an unroll factor of 96 requires too many
LUTs. The RIPL program achieves 2.5x higher FPS performance than the best C++ variant at 71
FPS, using fewer BRAMs and a similar number of LUTs.

RIPL versus dataflow in software. The RIPL program has also been compiled for an Intel i5
3.2GHz CPU, using the Orcc dataflow compiler’s C backend. This CPU is a high end processor com-
pared to embedded processors usually used for remote image processing. The CPU visual saliency
performance is 9 FPS. The FPGA performance is 8.3x faster than the CPU.

Code size. Visual saliency is 29 lines of RIPL code. The C++ visual saliency is 160 lines of code,
162 with manual array reuse, i.e. RIPL is 5x shorter than the C++ equivalents. The 29 lines of RIPL
is compiled to 44 actors amounting to 3.1k lines of dataflow actor code generated by the RIPL
compiler. The high level RIPL skeleton abstractions, and the ability to reuse RIPL functions, results

ACM Transactions on Reconfigurable Technology and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16 Stewart et al.

in a program that is 111x shorter than its direct dataflow program equivalent. The Orcc compiler
generates approximately 26k lines of C and 356k lines of Verilog. These program sizes are much
larger because it combines both algorithm code and scheduling code to implement DPN actor firing
semantics and actor synchronisation on dataflow wires.

4.3. Higher Level Case Study 2: Mean Shift Segmentation
The mean shift clustering algorithm [Fukunaga and Hostetler 1975] is a method to cluster data. This
has been applied to text detection in images [Kim et al. 2003] and real time video tracking of non-
rigid objects [Comaniciu et al. 2000]. Because the algorithm is used to distinguish between objects
based on their colour rather than shape, non-rigid objects can be tracked. The applications in image
segmentation were proposed in [Comaniciu and Meer 1999].

4.3.1. Mean Shift Segmentation Algorithm. Each pixel is mapped into an RGB colour space,
where each pixel has a vector position according to its red, green and blue values. This feature
space can be regarded as the probability density function of colour. Dense regions of this space
correspond to the local maxima of the probability density function. The value of a density function
at a point are estimated from the values observed around that point. The multivariate kernel density
estimator at the point x estimates the value using points within radius h of x and is given by;

f̂h,k(x) = ck

nhd

n∑
i=1

k(
∥∥x−xi

h

∥∥2). (5)

The density gradient estimator at a point can be estimated similarly from the values within a
small window around the point. The modes of the density estimator are found at the points with
zero gradient

`
f(x) = 0. The mean-shift vector given by

mh,k(x) = 1
2h

2c
ˆ̀ fh,k(x)
f̂h,−k′(x)

=
∑n

i=1 xik
′(||x−xi

h ||
2)∑n

i=1 k
′(||x−xi

h ||2)
− x, (6)

is the difference between the weighted mean of points within the bandwidth parameter h and x, the
center of the window. It points in the direction of a normalised maximum density gradient estimate;
it is zero at the point where the gradient of the probability density function is zero. The mean shift
vector can therefore be used to define a path towards the local maximum of the estimated density for
each point in the feature space. To ensure that mean shift clustering is applied only to neighbouring
image pixels of similar RGB colours, the mean shift vector is rewritten:

mhr,hs,G(x) =
∑n

i=1 xr,s
i k′(||x

r−xr
i

hr
||2)k′(||x

s−xs
i

hs
||2)∑n

i=1 k
′(||x

r−xr
i

hr
||2)k′(||x

s−xs
i

hs
||2)

− x, (7)

where xr,s is the 5D position in the joint-space, xr is the 3D component of the joint space vector
corresponding to the range and xs is the 2D component of the joint-space vector corresponding to
the position in the image. Using the Epanechnikov kernel, the required value;

−k′(x− x
′

h
) =

{
1 0 ≤ x− x′ ≤ h
0 x− x′ > h,

(8)

determines that all points x′ within a radius h of x are considered in the calculation, and all points
outside are not. The algorithm is in Algorithm 1. For each point in the joint space;

(1) Define a spherical window of radius hr around the 3 colour dimensions of this point and a
circular window of radius hs around the spatial dimensions and calculate the mean shift vector
(equation 7) from this point;

(2) If the mean shift vector is non-zero, add it to the current position and go back to step 1;
(3) If the mean-shift vector is zero at this point, define this point as the peak of the original point.

ACM Transactions on Reconfigurable Technology and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

RIPL: A Parallel Image Processing Language for FPGAs A:17

All points with the same peak are considered to belong to the same cluster.

Algorithm 1 Mean-Shift clustering algorithm pseudocode
input : Image file
output: Image with each cluster shaded the colour of its peak

1 for each index in joint space array do
2 while peak has not been found & iteration limit not exceeded do
3 Collect points within the spatial window
4 Collect points within the range window
5 Calculate mean-shift vector using equation 7
6 if mean shift vector is zero then
7 Peak has been found
8 end
9 Add mean shift vector to current point in joint space

10 end
11 Store value of peak in equivalent index of output image
12 end

Mean shift segmentation of image #385028 from the Berkeley Segmentation training
Dataset [Martin et al. 2001] is shown in Fig. 13. Fig. 13b shows the feature space for the red door,
Fig. 13c shows the segmented colours in the feature space after mean shift.

(a) Effect of mean shift (b) Door feature space (c) Mean shifted feature space

Fig. 13: Mean Shift Segmentation Visualised

4.3.2. Mean Shift Segmentation in RIPL. The RIPL implementation is split into three phases,
shown in Fig. 14. The first phase reads an RGB image into the first 3 elements in the 3rd dimension
of a peaksRGB array. The 4th and 5th elements store the 2D image space coordinates. The second
phase performs the mean shift kernel, which recurses with while either until mean shift has con-
verged to a peak or until the recursion limit is reached. The fold over range(512,512) iterates (i,j)
counters and the kernel creates a window around this point. A centre of mass is computed for each
point in the window, and each peak value is updated. If the current point is the peak (peakFound),
the while loop exits. The third phase projects the mean shifted RGB values from elements 1 to 3 of
the 3rd dimension of peaksRGB as output of the program.

ACM Transactions on Reconfigurable Technology and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18 Stewart et al.

/∗ phase 1 : map RGB image i n t o a 5D a r r a y f o r RGB + f e a t u r e space da ta ∗ /
img1 = imread RGB 512 512 ;
peaksRGB = f o l d g e n a r r a y (5 1 2 , 5 1 2 , 5) r a n g e (5 1 2 , 5 1 2) (\ (peaks) (i , j) −>

/∗ phase 2 : t h e mean s h i f t k e r n e l over t h e RGB f e a t u r e s space ∗ /
whi le ((c o u n t < r e c u r s e L i m i t) and (n o t peakFound)) {

/∗ f o r each p o i n t w i t h i n chosen window , f i n d c e n t e r o f mass ∗ /
f o r k i n r a n g e ((−1)∗ spa t i a lWindow , spa t i a lWindow) {

f o r l i n r a n g e ((−1)∗ spa t i a lWindow , spa t i a lWindow) {
/∗ i f t h e p o i n t i s w i t h i n a c i r c l e o f t h e c e n t e r ∗ /
i f (l ∗ l +k∗k <= spa t i a lWindow ∗ spa t i a lWindow) {

/∗ i f t h e p o i n t i s w i t h i n t h e image ∗ /
i f ((k+ peaks [i , j , 3] < wid th) and (k+ peaks [i , j , 3] >= 0)
and (l + peaks [i , j , 4] < h e i g h t) and (l + peaks [i , j , 4] >= 0)) {

/∗ i f p o i n t i s w i t h i n RGB window ∗ /
i f ((peaks [i , j ,0] − img1 [peaks [i , j , 3] + k , peaks [i , j , 4] + l , 0])
∗ (peaks [i , j ,0] − img1 [peaks [i , j , 3] + k , peaks [i , j , 4] + l , 0])
+ (peaks [i , j ,1] − img1 [peaks [i , j , 3] + k , peaks [i , j , 4] + l , 1])
∗ (peaks [i , j ,1] − img1 [peaks [i , j , 3] + k , peaks [i , j , 4] + l , 1])
+ (peaks [i , j ,2] − img1 [peaks [i , j , 3] + k , peaks [i , j , 4] + l , 2])
∗ (peaks [i , j ,2] − img1 [peaks [i , j , 3] + k , peaks [i , j , 4] + l , 2]) <=20∗20) {

/∗ up da t e v a l u e s o f 5−v e c t o r ∗ /
rVa l += img1 [peaks [i , j , 3] + k , peaks [i , j , 4] + l ,0] − peaks [i , j , 0] ;
gVal += img1 [peaks [i , j , 3] + k , peaks [i , j , 4] + l ,1] − peaks [i , j , 1] ;
bVal += img1 [peaks [i , j , 3] + k , peaks [i , j , 4] + l ,2] − peaks [i , j , 2] ;
xVal += k ; yVal += l ; norm ++;

}}}}}

i f (norm != 0) { /∗ up da t e v a l u e o f each peak ∗ /
peaks [i , j , 0] += (rVa l / norm) ; peaks [i , j , 3] += (xVal / norm) ;
peaks [i , j , 1] += (gVal / norm) ; peaks [i , j , 4] += (yVal / norm) ;
peaks [i , j , 2] += (bVal / norm) ;

}
/∗ check i f c u r r e n t p o i n t i s t h e peak ∗ /
peakFound = (rVa l ==0) and (gVal ==0) and (bVal ==0) ;

c o u n t ++; }) ;

/∗ phase 3 : p r o j e c t t h e RGB v a l u e s i n t o a new image f o r o u t p u t ∗ /
img2 = f o l d rgb (5 1 2 , 5 1 2) r a n g e (5 1 2 , 5 1 2) (\ (image) (i , j) −>

image [i , j , 0] = peaksRGB [i , j , 0] ;
image [i , j , 1] = peaksRGB [i , j , 1] ;
image [i , j , 2] = peaksRGB [i , j , 2] ;) ;

out img2 ;

Fig. 14: Mean shift segmentation in RIPL

4.3.3. Mean Shift Segmentation Results. Mean shift in RIPL is synthesised at 100MHz for the
Virtex 7 VC707. The mean shift convergence limit is 5, the spatial window size is 10, the range
window is 20, and test image size is 512 × 512. The RIPL is 70 lines of code. This compiles to
700 lines of dataflow IR code, which compiles to 427k lines of HDL code. The HDL uses 2% of
available LUTs, 1% FFs, 1% DSPs and 91% BRAMs. The BRAMs are used for the 3D array that
stores the RGB values and the 2D image space coordinates. The RIPL mean shift program achieves
approximately 7 FPS. This compares to our equivalent C++ that achieves 1.1 FPS for the mean shift
kernel, or 0.7 FPS when factoring in image file IO, parallelised with OpenMP on 64 cores of an
AMD Opteron 1.4GHz CPU.

ACM Transactions on Reconfigurable Technology and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

RIPL: A Parallel Image Processing Language for FPGAs A:19

4.4. Evaluation Platform: RIPL to an FPGA-based Smart Camera

ARM
AXI

interface

Xillybus

IP core

Application

logic

Camera

interface

OV7670

cameraHost

display FIFO

programmable logic

RIPL
Orcc riplc

C
gcc

PMOD

Zedboard

network DMA

remotecentralised

C
gcc

(a) FPGA-based processing architecture (b) RIPL on a Zedboard

Fig. 15: Deploying RIPL to Image Processing Architectures

To evaluate RIPL on real-time architectures, the Xilinx Zedboard in Fig. 15b, a platform FPGA
based around the Zynq-7020 chip, is used. Only the result of RIPL programs are transmitted over
Ethernet or Wifi, rather than raw camera frames, avoiding pressure on network bandwidth and power
needed for data transmission. Our experimental set up in Fig. 15a integrates camera control and im-
age acquisition hardware, interfacing an off-chip OmniVision OV7670 sensor, and a host processor
interface. Xillybus 2 is used to abstract the interface between hardware and software [Andrews et al.
2004], ensuring that our FPGA sub-system is portable across Zynq platforms. The interface converts
hardware FIFO channels to file descriptors in software, allowing software to use standard libraries
to receive data from the FPGA for further processing, or to transmit the RIPL results over a network
connection. A complete description of the architecture is given in [Bhowmik et al. 2017].

5. RELATED WORK

RIPL Section 4.2

(this paper)

Section 4.1

(this paper)

Halide

HLS C/C++

HLS OpenCV

RTL

FPGA

Darkroom

Orcc dataflow IR

Vivado HLS

Synthesis tool (e.g. XIlinx ISE)

Line buffer IR

Rigel:

Line buffer IR
Bezati et al. 2016

Bezati 2015
Hegarty et al. 2016

Hegarty et al. 2014Pu et al. 2016RIPL compiler

(this paper)

Fig. 16: Compilation of High Level FPGA Image Processing Languages

In addition to RIPL, two other high level image processing FPGA languages have been devel-
oped in recent years. They are Darkroom [Hegarty et al. 2014] and Rigel [Hegarty et al. 2016]. A
comparison of their compilation to FPGAs is shown in Fig. 16.

The expressivity of Darkroom is constrained to functions from (x, y) coordinates to pixel values,
i.e. elementwise operations, and stencils that use pixels neighbouring an (x, y) position. Darkroom
is compiled to a line buffer IR, however its line buffer IR to Verilog compiler is not publicly avail-
able. Darkroom is limited to processing one pixel per clock [Hegarty et al. 2016], a limitation over-
come by its successor, Rigel. Rigel is a line buffer compiler IR language, rather than a user facing
language like RIPL or Darkroom. It presents a space/time trade off to the user, and overcomes a
limitation of Darkroom by supporting the construction of image processing pyramids. Image pyra-
mids are also supported by RIPL, as shown in the three level discrete wavelet transform example in
Section 4.2.2. Like RIPL, Rigel supports SDF dataflow semantics, with an extension that supports

2http://xillybus.com

ACM Transactions on Reconfigurable Technology and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20 Stewart et al.

dynamic clock cycle latency and dynamic scheduling to check the validity of inputs. A contribution
of our paper in Section 3.1 is a formal account of the FSMs in the SDF and CSDF models that sup-
port RIPL’s skeletons. Rigel supports data dependant early kernel termination, which the authors
of [Hegarty et al. 2016] call sparse computations. RIPL also supports data dependant latency from
image processing kernels with the while construct.

A key difference between RIPL and Darkroom/Rigel is RIPLs support for multiple passes. For
example, the histogram normalisation RIPL program in Fig. 4 folds over an image to compute an
image histogram before normalising pixels of the original image with that histogram. This would
require two passes in Darkroom/Rigel, with a hand-written driver to combine the designs.

Another approach is FPGA support for the Halide [Pu et al. 2017] stencil language, with a back-
end targeting C that is synthesisable with Vivado HLS. The language separates computation from
scheduling. To achieve FPGA parallelism, loops should be manually unrolled with Halide’s unroll
by increasing the degree of parallelism of the FPGA datapath. In contrast, parallelism is automat-
ically derived from pipelines of RIPL skeletons, and data locality is achieved with RIPLs stream
combinator programming style. To support FPGAs, the Halide programming model differs slightly
from its software origins. The parallelism primitives e.g. tile and vectorize are not supported by the
FPGA backend. As such, existing Halide code may have to be modified to run on FPGAs.

Darkroom, Rigel and Halide are all restricted to expressing image stencil computations. RIPL
supports elementwise stencils with stream combinators map, zipWith and scale, and 1D/2D window
stencils with the stencil skeleton. RIPL’s fold skeleton adds expressivity needed for image reduction
operations, and recursive algorithms with non-local access patterns, as demonstrated with mean
shift segmentation in Section 4.3. The Rigel paper [Hegarty et al. 2016] suggests that Rigel’s higher
order Reduce module supports binary reduction only on windowed kernels residing in line buffers,
and not on entire images. RIPL’s fold skeletons can reduce image regions and also entire images.

A different approach to FPGA design is the use of graphical interfaces, where IP blocks are con-
figured and connected in order to generate the target system. Most notable is the Matlab/Simulink
HDL Coder [Mathworks 2017], which is supported through vendor FPGA-specific technologies,
namely Xilinx System Generator for DSP [Xilinx 2017a] and Altera DSP Builder [Altera 2017].
This approach is used for rapid prototyping with fast development cycles, as IP blocks are ready
to use. However, the black box nature of most IP blocks limits functionality customisation, so al-
gorithm changes are prohibited if the desired modified functionality does no exist in IP block tool-
boxes. In contrast, textual languages like RIPL provide the opportunity for programmers to define
custom functionality within generated IP blocks, e.g. as user defined skeleton functions in RIPL.

6. CONCLUSION
This paper presents RIPL, an image processing language for FPGAs. The language has high level al-
gorithmic skeleton primitives that capture image processing requirements including 1D/2D stencils,
as well as random data access and recursion. The skeletons are abstractions that represent small pro-
grammable IP block templates that form building blocks for constructing higher level algorithms.
We show RIPL’s expressivity for filters, a wavelet transform and a pyramidal visual saliency al-
gorithm in Section 4.2, and mean shift segmentation in Section 4.3. RIPL is more abstract than
OpenCV for small micro benchmarks because parallelism, data types, FIFO depths and data copy-
ing is inferred. Despite this, RIPL outperforms in three of four benchmarks. RIPL also outperforms
a C++ equivalent for visual saliency compiled with Vivado HLS.

There are many compilation routes for high level FPGA languages (Section 5), such as compiling
generic dataflow or domain specific IRs, and direct routes to RTL. This presents a trade off between
compile time reasoning about throughput and fine grained pixel processing pipelines, and real world
expressivity. RIPL’s generic dataflow IR underpinnings allows it to support random global data ac-
cess, recursion and automatic parallelism, in addition to standard image stencil pipelines. Lowering
image processing information from RIPL into its IR will enable fine grained scheduling, e.g. adapt-
ing line buffer pipelines as in Rigel’s IR. Likewise, adding recursion, dataflow feedback, global data
access to Rigel’s IR, likely at the cost of compile-time pipeline scheduling, will expand its expressiv-

ACM Transactions on Reconfigurable Technology and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

RIPL: A Parallel Image Processing Language for FPGAs A:21

ity for complex vision algorithms. Tying flexible dataflow semantics (for expressivity) with image
processing IRs (for optimisation) could enable user driven rewrite systems e.g. [Jones et al. 2001]
to expose space versus time FPGA trade offs guided by acceptable domain specific approximations.

REFERENCES
S. Ahmad, V. Boppana, I. Ganusov, V. Kathail, V. Rajagopalan, and R. Wittig. 2016. A 16-nm Multiprocessing System-on-

Chip Field-Programmable Gate Array Platform. IEEE Micro 36, 2 (Mar 2016), 48–62.
Altera. 2017. DSP Builder for Intel FPGAs. (2017). https://www.altera.com/products/design-software/model---simulation/

dsp-builder/overview.html.
David L. Andrews, Douglas Niehaus, Razali Jidin, Michael Finley, Wesley Peck, Michael Frisbie, Jorge L. Ortiz, Ed Komp,

and Peter J. Ashenden. 2004. Programming Models for Hybrid FPGA-CPU Computational Components: A Missing
Link. IEEE Micro 24, 4 (2004), 42–53.

Endri Bezati. 2015. High-Level Synthesis of Dataflow Programs for Heterogeneous Platforms: Design Flow Tools and Design
Space Exploration. Ph.D. Dissertation. School of Engineering, Ecole Polytechnique Federale de Lausanne, Switzerland.

Endri Bezati, Simone Casale Brunet, Marco Mattavelli, and Jörn W. Janneck. 2016. High-level synthesis of dynamic dataflow
programs on heterogeneous MPSoC platforms. In International Conference on Embedded Computer Systems: Architec-
tures, Modeling and Simulation, SAMOS 2016, July 17-21. IEEE, Agios Konstantinos, Samos Island, Greece, 227–234.

Deepayan Bhowmik, Paulo Garcia, Andrew M. Wallace, Robert J. Stewart, and Greg Michaelson. 2017. Power efficient
dataflow design for a heterogeneous smart camera architecture. In 2017 Conference on Design and Architectures for
Signal and Image Processing, DASIP 2017, September 27-29, 2017. IEEE, Dresden, Germany, 1–6.

Deepayan Bhowmik, Matthew Oakes, and Charith Abhayaratne. 2016. Visual Attention-Based Image Watermarking. IEEE
Access 4 (2016), 8002–8018.

Greet Bilsen, Marc Engels, Rudy Lauwereins, and J. A. Peperstraete. 1996. Cycle-static dataflow. IEEE Trans. Signal Pro-
cessing 44, 2 (1996), 397–408.

Ali Borji and Laurent Itti. 2013. State-of-the-Art in Visual Attention Modeling. IEEE Trans. Pattern Anal. Mach. Intell. 35,
1 (2013), 185–207.

André Rigland Brodtkorb, Christopher Dyken, Trond Runar Hagen, Jon M. Hjelmervik, and Olaf O. Storaasli. 2010. State-
of-the-art in heterogeneous computing. Scientific Programming 18, 1 (2010), 1–33.

Manuel M. T. Chakravarty, Gabriele Keller, Sean Lee, Trevor L. McDonell, and Vinod Grover. 2011. Accelerating Haskell
array codes with multicore GPUs. In Proceedings of the POPL 2011 Workshop on Declarative Aspects of Multicore
Programming, DAMP 2011, January 23. ACM, Austin, TX, USA, 3–14.

Murray Cole. 1991. Algorithmic Skeletons: Structured Management of Parallel Computation. MIT Press, Cambridge, MA,
USA.

Dorin Comaniciu and Peter Meer. 1999. Mean Shift Analysis and Applications. In ICCV. IEEE Computer Society, Kerkyra,
Greece, 1197–1203.

Dorin Comaniciu, Visvanathan Ramesh, and Peter Meer. 2000. Real-Time Tracking of Non-Rigid Objects Using Mean Shift.
In 2000 Conference on Computer Vision and Pattern Recognition (CVPR 2000), 13-15 June 2000. IEEE Computer
Society, Hilton Head, SC, USA, 2142.

Katherine Compton and Scott Hauck. 2002. Reconfigurable computing: a survey of systems and software. ACM Comput.
Surv. 34, 2 (2002), 171–210.

I. Daubechies and W. Sweldens. 1998. Factoring Wavelet Transforms into Lifting Steps. Journal of Fourier Anal. Appl. 4, 3
(1998), 245–267.

Johan Eker and Jorn W. Janneck. 2003. CAL Language Report Specification of the CAL Actor Language. Technical Report
UCB/ERL M03/48. EECS Department, University of California, Berkeley.

Jeremy Fowers, Greg Brown, Patrick Cooke, and Greg Stitt. 2012. A performance and energy comparison of FPGAs, GPUs,
and multicores for sliding-window applications. In Proceedings of the ACM/SIGDA 20th International Symposium on
Field Programmable Gate Arrays, FPGA 2012, February 22-24. ACM, Monterey, California, USA, 47–56.

Keinosuke Fukunaga and Larry Hostetler. 1975. The estimation of the gradient of a density function, with applications in
pattern recognition. IEEE Transactions on information theory 21, 1 (1975), 32–40.

Rafael C. González and Richard E. Woods. 1992. Digital image processing. Addison-Wesley, Reading, Massachusetts.
James Hegarty, John Brunhaver, Zachary DeVito, Jonathan Ragan-Kelley, Noy Cohen, Steven Bell, Artem Vasilyev, Mark

Horowitz, and Pat Hanrahan. 2014. Darkroom: Compiling High-Level Image Processing Code into Hardware Pipelines.
ACM Trans. Graph. 33, 4 (2014), 144:1–144:11.

James Hegarty, Ross Daly, Zachary DeVito, Mark Horowitz, Pat Hanrahan, and Jonathan Ragan-Kelley. 2016. Rigel: flexible
multi-rate image processing hardware. ACM Trans. Graph. 35, 4 (2016), 85:1–85:11.

Jörn W. Janneck. 2003. Actors and their Composition. Formal Asp. Comput. 15, 4 (2003), 349–369.

ACM Transactions on Reconfigurable Technology and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22 Stewart et al.

J. Jeddeloh and B. Keeth. 2012. Hybrid memory cube new DRAM architecture increases density and performance. In 2012
Symposium on VLSI Technology (VLSIT). IEEE Xplore, Honolulu, Hawaii, 87–88.

S. Peyton Jones, A. Tolmach, and T. Hoare. 2001. Playing By The Rules: Rewriting as a Practical Optimisation Technique
in GHC. In Proceedings of the ACM SIGPLAN Haskell Workshop, September 2, 2001. ACM, Firenze, Italy, 203–233.

Kwang In Kim, Keechul Jung, and Jin Hyung Kim. 2003. Texture-based approach for text detection in images using support
vector machines and continuously adaptive mean shift algorithm. IEEE Transactions on Pattern Analysis and Machine
Intelligence 25, 12 (2003), 1631–1639.

Oleg Kiselyov. 2012. Iteratees. In Functional and Logic Programming - 11th International Symposium, FLOPS 2012, May
23-25, 2012. Proceedings. Springer, Kobe, Japan, 166–181.

Edward A. Lee and David G. Messerschmitt. 1987. Synchronous Data Flow: Describing Signal Processing Algorithm for
Parallel Computation. In COMPCON’87, Digest of Papers, Thirty-Second IEEE Computer Society International Con-
ference, February 23-27. IEEE Computer Society, San Francisco, California, USA, 310–315.

Edward A. Lee and Thomas M. Parks. 2002. Dataflow Process Networks. In Readings in Hardware/Software Co-design,
Giovanni De Micheli, Rolf Ernst, and Wayne Wolf (Eds.). Kluwer Academic Publishers, Norwell, MA, USA, 59–85.

Erik Jan Marinissen and Yervant Zorian. 2017. Guest Editors Introduction: Design & Test of a High-Volume 3-D Stacked
Graphics Processor With High-Bandwidth Memory. IEEE Design & Test 34, 1 (2017), 6–7.

David R. Martin, Charless C. Fowlkes, Doron Tal, and Jitendra Malik. 2001. A Database of Human Segmented Natural
Images and its Application to Evaluating Segmentation Algorithms and Measuring Ecological Statistics. In ICCV.
IEEE, Vancouver, BC, Canada, 416–425. DOI:http://dx.doi.org/10.1109/ICCV.2001.937655

Mathworks. 2017. FPGA Design and SoC Codesign. (2017). https://uk.mathworks.com/solutions/fpga-design.html.
J. Mcgraw, S. Skedzielewski, S. Allan, Oldehoeft Oldehoeft, J. Glauert, C. Kirkham, B. Noyce, and R. Thomas. 1985. SISAL:

Streams and iteration in a single assignment language, language reference manual version 1.2. Lawrence-Livermore-
National-Laboratory, Livermore, CA.

R. Nane, V. M. Sima, C. Pilato, J. Choi, B. Fort, A. Canis, Y. T. Chen, H. Hsiao, S. Brown, F. Ferrandi, J. Anderson, and K.
Bertels. 2016. A Survey and Evaluation of FPGA High-Level Synthesis Tools. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 35, 10 (Oct 2016), 1591–1604.

Jing Pu, Steven Bell, Xuan Yang, Jeff Setter, Stephen Richardson, Jonathan Ragan-Kelley, and Mark Horowitz. 2017. Pro-
gramming Heterogeneous Systems from an Image Processing DSL. TACO 14, 3 (2017), 26:1–26:25.

B. C. Schafer and A. Mahapatra. 2014. S2CBench: Synthesizable SystemC Benchmark Suite for High-Level Synthesis. IEEE
Embedded Systems Letters 6, 3 (Sept 2014), 53–56.

Thomas Li Stephen Neuendorffer and Devin Wang. 2015. Accelerating OpenCV Applications with Zynq-7000 All Pro-
grammable SoC using Vivado HLS Video Libraries v3.0. Technical Report. Xilinx. https://www.xilinx.com/support/
documentation/application notes/xapp1167.pdf.

Robert Stewart. 2018. Open dataset for ”RIPL: A Parallel Image Processing Language for FP-
GAs”, in ACM Transactions on Reconfigurable Technology and Systems. (January 2018).
DOI:http://dx.doi.org/10.17861/ca09418a-cbc2-4d28-98a1-746267a26f9d

Robert Stewart, Greg J. Michaelson, Deepayan Bhowmik, Paulo Garcia, and Andy Wallace. 2016. A Dataflow IR for Memory
Efficient RIPL Compilation to FPGAs. In Algorithms and Architectures for Parallel Processing Collocated Workshops,
DLMCS, December 14-16 (Lecture Notes in Computer Science), Vol. 10049. Springer, Granada, Spain, 174–188.

Robert J. Stewart, Deepayan Bhowmik, Andrew M. Wallace, and Greg Michaelson. 2017. Profile Guided Dataflow Trans-
formation for FPGAs and CPUs. Signal Processing Systems 87, 1 (2017), 3–20.

David Taubman and Michael Marcellin. 2012. JPEG2000 Image Compression Fundamentals, Standards and Practice: Image
Compression Fundamentals, Standards and Practice. Vol. 642. Springer Science & Business Media, Berlin, Germany.

David B. Thomas, Lee W. Howes, and Wayne Luk. 2009. A comparison of CPUs, GPUs, FPGAs, and massively parallel
processor arrays for random number generation. In Proceedings of the ACM/SIGDA 17th International Symposium on
Field Programmable Gate Arrays, FPGA 2009, February 22-24. ACM, California, USA,, 63–72.

Donald E. Thomas and Philip Moorby. 1996. The Verilog hardware description language (3. ed.). Kluwer, Boston.
William A. Wulf and Sally A. McKee. 1995. Hitting the memory wall: implications of the obvious. SIGARCH Computer

Architecture News 23, 1 (1995), 20–24.
Xilinx. 2015. 7 Series FPGAs Overview, DS180 (v1.17) Product Specification. Technical Report. Xilinx Inc.
Xilinx. 2017a. System Generator for DSP. (2017). https://www.xilinx.com/products/design-tools/vivado/integration/sysgen.

html.
Xilinx. 2017b. Vivado High-Level Synthesis. (2017). https://www.xilinx.com/products/design-tools/vivado/integration/

esl-design.html.

ACM Transactions on Reconfigurable Technology and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

View publication statsView publication stats

