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Abstract—An analytic parahermitian matrix admits an eigen-
value decomposition (EVD) with analytic eigenvalues and eigen-
vectors except in the case of multiplexed data. In this paper, we
propose an iterative algorithm for the estimation of the analytic
eigenvalues. Since these are generally transcendental, we find a
polynomial approximation with a defined error. Our approach
operates in the discrete Fourier transform (DFT) domain and
for every DFT length generates a maximally smooth association
through EVDs evaluated in DFT bins; an outer loop iteratively
grows the DFT order and is shown, in general, to converge to
the analytic eigenvalues. In simulations, we compare our results
to existing approaches.

I. INTRODUCTION

Most broadband array problems, in which data received

by M sensors is held in a zero-mean vector x[n] ∈ C
M

with time index n ∈ Z, can be formulated using polynomial

matrix algebra. This includes, e.g., beamforming [1], [2], blind

source separation [3], multichannel coding [4], [5], and MIMO

system design [6]. Central to this approach is the space-time

covariance matrix R[τ ] = E
{
x[n]xH[n− τ ]

}
, where E{·}

is the expectation operator, {·}H the Hermitian transposition,

and τ ∈ Z a lag parameter. Since R[τ ] contains auto- and

cross-correlation sequences, we have R[τ ] = RH[−τ ]. Its z-

transform, the cross spectral density (CSD) matrix R(z) =
∑

τ R[τ ]z−τ , z ∈ C, satisfies the parahermitian property [7]

R(z) = RP(z), with RP(z) ≡ RH(1/z∗).
For narrowband array problems, optimal solutions are often

based on the diagonalisation, via an eigenvalue decomposition

(EVD), of the narrowband covariance matrix R[0]. For an

analogous broadband problem, we would like to diagonalise

R[τ ] for every lag value τ , or equivalently the CSD matrix

R(z) for all values of z. The McWhirter decomposition, or

polynomial EVD (PEVD) [8], is an approximate factorisation

R(z) ≈ U (z)D(z)U P(z) that uses Laurent polynomial

matrices U (z) and D(z). The Laurent polynomial matrix

D(z) is diagonal and contains the M approximate polynomial

eigenvalues dm(z), m = 1, . . . ,M . On the unit circle these

eigenvalues are spectrally majorised [9] such that dm(ejΩ) ≥
dm+1(e

jΩ) ∀Ω and m = 1, . . . , (M − 1). The polynomial

matrix of eigenvectors U (z) is paraunitary [7], such that

U−1(z) = U P(z). Several algorithms exist for calculating
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the PEVD that are proven to converge to a diagonal D(z),
including the sequential best rotation (SBR2) [5], [8], [10],

[11]) and sequential matrix diagonalisation (SMD, [12], [13])

families of algorithms. In general, spectral majorisation is

encouraged but for the case of SBR2 it has been shown that

spectral majorisation is guaranteed [14].

In [15], [16], we have shown that for an analytic paraher-

mitian R(z), a parahermitian matrix EVD (PhEVD)

R(z) = Q(z)Λ(z)QP(z) (1)

exists with an analytic paraunitary Q(z) and an analytic

diagonal Λ(z) = diag{λ1(z), . . . λM (z)}, unless R(z) arises

from multiplexed data [16]. The factors Λ(z) and Q(z) are

absolutely convergent but generally transcendental functions

in z, i.e. (infinite) Laurent series. Hence any algorithm for

calculating the PhEVD will most likely only be able to

approximate the result (again using Laurent polynomials).

If the underlying eigenvalues λm(z), m = 1, . . . ,M , are

not majorised, the PEVD will produce a spectrally majorised

solution that is a frequency dependent permutation of the

analytic PhEVD solution, as shown in the example in Fig. 1(a)

and (b). In this case, profound consequences arise for the

PEVD: the eigenvalues in D(z) of the PEVD may need to

approximate non-differentiable functions, in which case the

PEVD eigenvectors in U (z) must approximate discontinuous

functions [15]. Therefore, much higher approximation orders

are generally required to model the PEVD factors D(z) and

U (z) compared to approximations of the PhEVD factors Λ(z)
and Q(z) in (1). High polynomial orders are undesirable in

terms of the cost of both calculating the PEVD/PhEVD and

implementing its factors in, e.g., [1]–[6].

Although [15], [16] proved the existence of analytic eigen-

values, no algorithm was proposed. We are therefore interested

in algorithms that can approximate the analytic solution in (1).

Because of analyticity of both R(z) and its desired factors,

it suffices to consider such functions on the unit circle,

R(ejΩ) = R(z)|z=ejΩ , since a solution in z may be obtained

by re-parameterisation. The key factor here is that analyticity

implies smoothness. Related efforts have been undertaken for

general matrices A(t) that depend on a real parameter t ∈ R

on some interval. For the EVD, singular value (SVD) and

QR decompositions, [17] has shown that smooth factorisations

exist for matrices A(t) that are q-times differentiable but

not necessarily analytic, with the analytic factorisation case

covered in [18]. Specifically, an analytic SVD for an analytic

A(t) has been defined in [19], [20], which uses the arc

length or minimum total variation of an interpolation across

SVDs of the discretised A(t) as an optimisation criterion
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Fig. 1. (a) Analytic eigenvalues of the PhEVD of a matrix R(z), evaluated on
the unit circle, z = ejΩ, (b) spectrally majorised eigenvalues as approximated
by the PEVD, and (c) eigenvalues evaluated in K = 8 DFT bins.

for smoothness [20]. A similar differential equation-based

approach in [21] is solved via a Runge-Kutta method. In

[22], a sample-based ‘continuation algorithm’ employs pre-

diction/correction steps to weave smooth functions through

discrete samples along the t-axis. More recently, Chebyshev

interpolation is utilised in [23] to determine an analytic SVD

of A(t). Note however, that an analytic decomposition of

A(t) does not imply that such a decomposition exists for a

matrix B(ejΩ) that depends periodically on Ω ∈ R [16]. If

it does exist, then the cyclic nature offers unique exploitation

in terms of interpolation and efficient implementation that are

not utilised in [20]–[23].

In the context of discrete time systems, [24], [25] have

investigated the QR decomposition of a general matrix B(z)
on the unit circle. The assumption there is that the number

of sample points along the unit circle is sufficiently high to

permit an interpolated solution. Finally, Tohidian et al. [26]

have chosen a DFT-based approach to a polynomial eigenvalue

decomposition; operating with a set DFT length, they perform

a bin-wise EVD and aim to approximate either spectrally

majorised or smooth eigenvalues. The approaches in [24]–[26]

do not explicitly exploit analyticity of the factors. Particularly

for [26], no convergence proof is stated, and there is no mech-

anism for calculating what DFT length might be sufficient.

DFT-based approaches that treat the frequency bins as inde-

pendent somewhat negate the advantage of spectral coherence

that is guaranteed by time-domain PEVD algorithms such

as [5], [8], [10]–[13]. Therefore, spectral coherence has to be

re-introduced across bins similarly to [20]–[23]. In the case of

the smooth polynomial EVD in [26], this is accomplished by

monitoring the orthogonality of eigenvectors across bins. Since

eigenvectors are not unique [15] and can form an arbitrary C-

fold basis at a C-fold algebraic multiplicity of eigenvalues,

this can be misleading [27].

In this paper, building on the work in [27], we present an

approach to extract analytic eigenvalues from an analytic CSD

matrix R(z). We exploit the absolute convergence of analytic

functions twofold: firstly we utilise infinite differentiability to

define a smoothness criterion that can establish a coherent

association across DFT bins based on [28], [29]. Secondly, we

iteratively increase the DFT length and thereby approximation

order until a sufficiently low truncation error is achieved.

Different from [26], we operate on the eigenvalues only

and leave aside the potentially more perturbed eigenvectors

in determining associations. Unlike [27], the algorithm uses

a computationally cheaper and more robust evaluation of a

smoothness metric as defined in [29], and a modified cost

function for which convergence can be proven.

Below, Sec. II defines some important properties of the

PhEVD, followed by the definition of a smoothness metric in

Sec. III. The proposed algorithm is outlined in Sec. IV, which

for a given DFT length finds a maximally smooth association

across the frequency bins, and then iteratively increases the

DFT length until a correct association with a sufficiently small

approximation error is found. A maximum likelihood sequence

estimation approach for this algorithm is presented in Sec. V,

which is benchmarked in Sec. VI.

II. PARAHERMITIAN MATRIX EVD

A. Space-Time Covariance Model

The space-time covariance R[τ ] is based on the measure-

ment vector x[n] = [x1[n], . . . , xM [n]]
T

, which is assumed

to emerge from the source model in Fig. 2; this contains a

convolutive mixing system H[n] ∈ C
M×Ls that combines Ls

mutually independent source signals sℓ[n], ℓ = 1, . . . , Ls. This

is a generic signal model which includes the case where some

or all of the sources are spectrally majorised. We exclude

the case of mutually dependent signals since, as with the

ordinary EVD, being correlated they would be seen by the

PhEVD as one signal. The z-transform H (z) =
∑

n H[n]z−n:

C → C
M×Ls is a matrix of transfer functions. In the

following we represent such a z-transform pair using the

notation H[n] ◦—• H (z). The input signals to the mix-

ing system, sℓ[n], can be tied to zero mean unit variance

uncorrelated Gaussian sources uℓ[n] via innovation filters

gℓ[n] ◦—• Gℓ(z) [30], such that the power spectral density

of sℓ[n] is given by Γℓ(z) = Gℓ(z)G
P
ℓ(z) if evaluated on the

unit circle. With G(z) = diag{G1(z), . . . , GLs
(z)},

R(z) = H (z)G(z)GP(z)H P(z) (2)

is the CSD matrix based on the source model in Fig. 2. We

assume that we are given an error-free CSD matrix based on

such a source model, but note that there might be issues when

using estimated covariance matrices from finite data [60].

If the system components of this model are causal and

stable, then the CSD matrix R(z) in (2) will be analytic

and parahermitian. If evaluated on the unit circle, R(ejΩ) =
R(z)|z=ejΩ is a self-adjoint operator such that R(ejΩ) =
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Fig. 2. Source model for measurement vector x[n].

RH(ejΩ), i.e., when evaluated at any particular frequency

Ω0 ∈ R, R(ejΩ0) is a Hermitian matrix. It is also positive

semi-definite.

B. Parahermitian Matrix EVD

As long as the source model in Fig. 2 cannot be tied to

any multiplexing operations [16], for an analytic R(z) the

following can be stated for its eigenvalues in (1).

Theorem 1 (Eigenvalues of a parahermitian matrix):

For an analytic, parahermitian, and non-multiplexed

R(z) : C → C
M×M , there exist M unique analytic

eigenvalues.

Proof. This has been proven in [16], based on analysis in [15]

extending results for analytic self-adjoint matrices in [31]. �

C. Polynomial Approximation of PhEVD

Even if R(z) is a Laurent polynomial, in most cases,

both Q(z) and Λ(z) in (1) will be (infinite) Laurent series,

and represent algebraic or even transcendental functions. We

are therefore interested in approximating Q(z) and Λ(z) by

Laurent polynomial factors Q̂(N)(z) and Λ̂(N)(z) of order N .

Given its profound consequences for our algorithmic approach

later, we state the following relatively trivial and well-known

theorem for the approximate eigenvalues Λ̂(N)(z).
Theorem 2 (Laurent polynomial approximation): For |z| =

1, the best N th-order approximation Λ̂(N)(z) of an analytic

Λ(z) in the least squares sense is obtained by truncating Λ(z)
to the required order.

Proof. See Appendix A. �

Further, the Fourier transform λ̂(N)(ejΩ) •—◦ λ̂(N)[τ ] will

converge uniformly to λ(ejΩ) [32], i.e., the approximation

error decreases to an arbitrarily small value at every frequency

Ω ∈ R given a sufficient approximation order N .

D. EVD at Sample Points of R(z)

In order to build a DFT domain algorithm, we take K
discrete sample points1 of R(z) along the unit circle, resulting

in Rk = R(z)|z=ej2πk/K , k = 0, . . . , (K − 1), which is

Hermitian according to Sec. II-A. The EVD Rk = QkΛkQ
H
k

provides a diagonal Λk,

Λk = diag
{

F
(K)
1,k , . . . , F

(K)
M,k

}

, (3)

whereby we assume that the eigenvalues F
(K)
µ,k , µ = 1, . . . ,M ,

are majorised, i.e. arranged in descending order, such that

F
(K)
µ,k ≥ F

(K)
µ+1,k ∀µ = 1, . . . , (M − 1). Because of this

1The term ‘samples’ refers to discrete values in the time domain, while
‘sample points’ indicates discrete values taken on the unit circle.

ordering, we find that in general the F
(K)
m,k consist of samples

from different λm(z) i.e.

F
(K)
µ(m,k),k = λm(z)|z=ej2πk/K (4)

where µ(m, k) is a suitable permutation, and λm(z) the mth

eigenvalue of R(z) in (1). Since in (4), µ(m, k) = m cannot

be assumed, the challenge in interpolating from the sample

points F
(K)
µ,k to produce an approximation of the true, analytic

eigenvalues is to find the correct mapping or permutation

µ(m, k) of indices at each sample point. We will identify

this permutation using the infinitely differentiability property

of analytic functions via a metric for smoothness. Note that

some constructed pathological cases exist where infinitely

differentiable aperiodic functions are not analytic [33]. We are

not aware of any periodic, real-valued, infinitely differentiable

functions that are not analytic; if they exist, then in such

pathological cases this approach may not work.

III. MEASURING SMOOTH ASSOCIATION ACROSS

FREQUENCY BINS

We are given sample points F
(K)
µ,k , µ = 1, . . . ,M via (4)

that are majorised in every bin k = 0, . . . , (K − 1). The

aim is to create associations across frequency bins, i.e. to

find a sequence {F (K,a)
m,k } by reordering the sample points,

on a bin-by-bin basis, in {F (K)
m,k } such that the interpolating

functions Fm(ejΩ), with Fm(ejΩk) = F
(K,a)
m,k , Ωk = 2πk

K ,

k = 0, . . . , (K − 1), m = 1, . . . ,M , are maximally smooth.

The best association will be found by suitably measuring the

smoothness of an interpolation. For simplicity, in the following

we only work with a single function, and omit the spatial index

m or µ and the superscript ‘a’ for ‘associated’.

Based on the definition of a Dirichlet kernel in Sec. III-A

and of a maximally smooth interpolation in Sec. III-B, we

derive a metric in Sec. III-C. This material is based on earlier

work in [28], [29], but specifically addresses interpolation that

reflects properties of eigenvalues, i.e. symmetry in the time

domain or real-valuedness in the Fourier domain, and presents

findings on improved numerical stability and computational

complexity in a compacted and more rigorous form.

A. Dirichlet Interpolation

Ultimately, we will measure smoothness via the derivative

of a smooth, continuous function F (K)(ejΩ) that interpolates

K sample points F
(K)
k . Typically, for periodic problems,

the sampling function or interpolant [34], [35] relies on the

periodic sinc function or Dirichlet kernel [36]

PK(ejΩ) =
sin K

2 Ω

sin 1
2Ω

. (5)

Its inverse Fourier transform pK [τ ] ◦—• PK(ejΩ),

pK [τ ] =

{
1, |τ | ≤ K−1

2 ,
0, otherwise ,

(6)

is a rectangular window centred at the origin. In the definition

of the zero-centred rectangular window, K in (5) and (6) must
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Ω

(a)
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τ

(c) jf (4)[τ ]j
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τ
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Ω
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0 2ππ

0 0 11−1−2−3 −1−2−3 2 342 3

Fig. 3. Example for taking an (a) odd and (b) even number (K) of sample
points of a real valued function on the unit circle, and their respective K-
periodic time domain equivalents in (c) and (d), respectively.

be odd: for even K, the window in (6) becomes untethered

from the sampling grid, while (5) becomes 4π-periodic [34].

While odd values of K match the odd support length

of an auto-correlation-type sequence, one might prefer to

rely on power-of-two-point fast Fourier transforms (FFT) to

obtain the sample points. In order to admit general values

K ∈ N, the window in (6) is typically shifted to the interval

τ = 0, . . . , (K − 1) [34], [35]. Its Fourier transform is

PK(ejΩ)e−j 1
2
(K−1)Ω, i.e. it is phase-shifted with respect to (5)

and therefore complex-valued. Since here the sample points

are taken from a power spectral density-type function, we

would like the interpolant F (K)(ejΩ) to reflect its properties,

i.e. be real-valued, and potentially also be symmetric in the

case that real-valued data generates R(z). In order to satisfy

these properties, we require an interpolant to be both real

valued and symmetric. In the following section we will explore

how this can be accomplished without a time or phase shift.

B. Modified Dirichlet Interpolation

To find a suitable interpolant, consider an analytic function2

Λ(ejΩ) •—◦ λ(τ) that generates the sample points F
(K)
k =

λ(ejΩk), Ωk = 2π
K k, k = 0, . . . , (K − 1). Let f (K)[τ ]

be the inverse DFT of F
(K)
k . Because F

(K)
k is discretised

in the Fourier domain, f (K)[τ ] will be periodised w.r.t. a

fundamental period of K samples in the time domain, such

that

f (K)[τ ] =

∞∑

ν=−∞

λ[τ − νK] . (7)

The symmetry of f (K)[τ ] is most easily satisfied if K is odd,

as shown in Fig. 3(a) and (c). If K is even, as illustrated by

the example in Fig. 3(b), then the periodicity above enforces

symmetry with respect to τ = K/2 as shown in Fig. 3(d).

This in turn requires that the images of λ[τ ] in (7) overlap by

at least one point.

We therefore define as a sampling function, or interpolant,

the real valued symmetric function

p̃K [τ ] =







pK [τ ], K odd,
pK−1[τ ] +

1
2δ[τ−K

2 ]
+ 1

2δ[τ+
K
2 ], K even,

(8)

2The correspondence is a DFT between a function indexed by τ in the time
domain and one indexed by k in the frequency domain.

where pN [τ ] is the rectangular window in (6); its length N
must be odd. Since p̃K [τ ] is symmetric and real valued, its

Fourier transform P̃K(ejΩ) •—◦ p̃K [τ ],

P̃K(ejΩ) =







sin K
2
Ω

sin 1
2
Ω

, K odd,
(

sin K−1
2

Ω

sin 1
2
Ω

+ cos K
2 Ω

)

, K even,
(9)

therefore is also real valued and symmetric. It represents a

Dirichlet kernel or periodic sinc when K is odd. In the case

of K is even, it is a modified Dirichlet kernel3.

Theorem 3 (Maximally smooth interpolation): The kernel
1
K P̃K(ejΩ) in (9) is the smoothest possible real valued and

symmetric interpolant through the K sample points on the

unit circle in the sense that p̃K [τ ] ◦—• P̃K(ejΩ) is the shortest

possible window to satisfy the Nyquist-K condition.

Proof. We require a continuous sampling function that interpo-

lates the sampling points on the unit circle with the smoothest

possible continuous function in Ω. Firstly, it is well-known that

a sampling function, for K samples, must satisfy the Nyquist-

K condition [7]. Secondly, the time-bandwidth product of the

Fourier transform ties maximal smoothness in one domain to

the shortest possible support in the other domain.

With respect to the sampling function, because we in-

terpolate through sample points in the Fourier domain, the

usual time- and frequency-domain meanings of a Nyquist-

K system [7], [37] are reversed. If a function F (ejΩ) is

sampled K-fold on the unit circle, such that F
(K)
k =

F (ejΩk), Ωk = 2πk/K, then for f [τ ] ◦—• F (ejΩ) and

f (K)[τ ] ◦—• F (K)
k (ejΩ),

f (K)[τ ] =

∞∑

ν=−∞

f [τ − νK] . (10)

With F (ejΩ) = P̃K(ejΩ), i.e. f [τ ] = p̃K [τ ], it is easy to show,

with (8), that due to the periodisation (10) becomes

p̃
(K)
K [τ ] = 1 ∀τ . (11)

Note that with the domains reversed, (11) is equivalent to the

typical frequency domain definition of a Nyquist-K system.

In the ‘other’ domain, the interpolating kernel exhibits K − 1
regular zero crossings, as shown in the example in Fig. 4.

Hence, the modified periodic sinc or Dirichlet window in (8)

and (9) represents a Nyquist-K system.

It remains to be shown that p̃K [τ ] is the shortest possible

window. If instead of f [τ ] = p̃K [τ ] we chose a different

window of length J < K, then the shifted versions of f [τ ]
in (10) will be separated by (K − J) zero values, and hence

the Nyquist-K property (11) is not satisfied. This therefore

necessitates the form in (8). �

The smoothest possible interpolation through K uniformly

spaced sample points on the unit circle, F
(K)
k ∈ R, k =

0, . . . , (K − 1), can therefore be based on the modified

3In the signal processing literature, real valued Dirichlet kernels for even
K are generally excluded; see e.g. explicitly [35] or implicitly [34], [37],
[38]. Nonetheless, in trigonometric interpolation theory a ‘modified Dirichlet
kernel’ [39] exists for even K, while here this term refers to K ∈ N via (9).
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Fig. 4. Examples of modified Dirichlet kernels to provide a maximally
smooth interpolation through K = {4, 5} sample points.

Dirichlet kernel, s.t.

F (K)(ejΩ) =
1

K

K−1∑

k=0

F
(K)
k P̃K(ej(Ω−2πk/K))

=
1

K

K−1∑

k=0

F
(K)
k

LK∑

τ=−LK

p̃K [τ ]e−j(Ω−2πk/K)τ ,

with p̃K [τ ] as defined in (8) and LK = (K−1)/2 for K odd,

and LK = K/2 for K even. Using matrix and vector notation

with

eHK(ejΩ) =
[

ejΩLK , ejΩ(LK−1), · · · , e−jΩLK

]

(12)

PK = diag{p̃K [−LK ], p̃K [−LK+1], . . . , p̃K [LK ]} (13)

TK =

[
0LK×(K−LK) ILK

ILK+1 0(LK+1)×(K−LK−1)

]

WH
K (14)

fTK =
[

F
(K)
0 , . . . , F

(K)
K−1

]

, (15)

where WK is a K-point DFT matrix that is scaled to be

unitary, and Tk ∈ Z
K×K for K odd and Tk ∈ Z

(K+1)×K for

K even, the interpolation can be written as

F (K)(ejΩ) =
1√
K

eHK(ejΩ)PKTKfK . (16)

C. Smoothness Metric

If a correct association has been made, the sample points

F
(K)
k belong to an analytic function, which will be infinitely

differentiable. Therefore, we want to assess the smoothness

of the interpolant F (K)(ejΩ), and use the power in the pth

derivative,

χp =
1

2π

π∫

−π

∣
∣
∣
∣

dp

dΩp
F (K)(ejΩ)

∣
∣
∣
∣

2

dΩ , (17)

as a discriminator. Employing the matrix notation of (16), the

pth derivative of F (K)(ejΩ) can be written as

dp

dΩp
F (K)(ejΩ) =

1√
K

eHK(ejΩ)Dp
KPKTKfK ,

where

DK = diag{−jLK , −j(LK − 1), . . . , jLK} . (18)

We evaluate (17) using Parseval’s theorem [28], [34], [35] so

that

1

2π

π∫

−π

∣
∣eHK(ejΩ)α

∣
∣
2
dΩ = α

H
α , (19)

which only depends on α but no longer depends on Ω.

Rewriting (17), we can therefore assess the power in the

derivatives of the smoothest possible interpolation through the

sample points F
(N)
k via

χp = ‖Dp
KPKTKfK‖22 . (20)

Note that (20) may be written as

χp = fTKCp,KfK , (21)

where Cp,K is independent of the sample points contained in

the vector fK ∈ R
K .

Since we later evaluate the smoothness via the weighted

inner product in (21), some properties of Cp,K are noteworthy.

By construction, Cp,K is a Hermitian matrix and positive

semi-definite. When multiplied out, it is easily demonstrated

that

Cp,K = WKD̃p,KWH
K , (22)

where

D̃p,K =







diag
{

02p, 12p, . . . , L2p
K , L2p

K , . . . , 12p
}

,

K odd , (23a)

diag
{

02p, 12p, . . . , (LK − 1)2p, 1
2L

2p
K ,

(LK − 1)2p, . . . , 12p
}

, K even . (23b)

Furthermore, because of the DFT matrix WK in (22), Cp,K

is circulant and contains as elements the inverse DFT of

the diagonal elements of D̃p,K [7]. We also find that (22)

is real-valued because the diagonal elements form sequences

that are symmetric w.r.t. their (L2p
K + 1)th entry, i.e. that

Cp,K ∈ R
K×K . Finally, since (22) also represents an eigen-

value decomposition, the eigenvalue matrix D̃p,K reveals that

Cp,K is rank deficient for p > 0.

If smoothness is measured by accumulating the cost χp up

to the P th derivative [28], then

χ(P ) =
P∑

p=0

χp = fTK

P∑

p=0

Cp,KfK = fTKC
(P )
K fK , (24)

where C
(P )
K ∈ R

K×K inherits the properties of its constituent

components Cp,K . Note that Cp,K has rank (K−1) for p > 0,

but that C0,K , due to D̃p,K in (23), is full rank and hence the

cumulative matrix C
(P )
K is also full rank. Since the eigenvalues

of the latter are
∑P

p=0 D̃p,K , the condition number of C
(P )
K

is approximately proportional to L2p
K .

IV. ITERATIVE EXTRACTION OF MAXIMALLY SMOOTH

ASSOCIATIONS

A. General Approach

Driven by the smoothness metric in (24), the aim is now to

assign the MK sample points F
(K)
m,k in (3) to M interpolants

represented each by their K sample points in fK,m ∈ R
K ,

m = 1, . . . ,M . An example for the M = 3 eigenvalues in

Fig. 1(b) with K = 8 is shown in Fig. 1(c). To associate the
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Algorithm 1: Extraction of Analytic Eigenvalues

1: initialise K to exceed the support of R(z);
2: determine eigenvalues of R(ejΩk), k = 0, . . . , (K − 1);

3: determine smoothest association F
(K,a)
m,k ;

4: repeat

5: K ← 2K;

6: determine eigenvalues of R(ejΩk), k = 0, . . . , (K−1);
7: determine smoothest association F

(K,a)
m,k ;

8: from F
(K,a)
m,k and F

(K/2,a)
m,k , determine metrics ξ1, ξ2;

9: until (ξ1 < ǫ1) ∧ (ξ2 < ǫ2).

sample points such that the M interpolants collectively are as

smooth as possible, we solve

{F (K,a)
m,k } = argmin

fK,m

M∑

m=1

fTK,mC
(P )
K fK,m , (25)

where the superscript {·}(a) indicates that sample points are

now ordered such that they associate with maximally smooth

functions. For the DFT length K →∞ and the derivative order

P → ∞, ignoring the potential pathological cases mentioned

in Sec. II-D, (25) will be proven to provide the association of

sample points corresponding to the analytic functions.

Two challenges arise from (25). Firstly, M ! possible permu-

tations have to be checked in each of the K bins, and it is left

to Sec. V to replace an exhaustive search with a more scalable

procedure. Secondly, for too small a value of K, (i) the number

of sample points K may be insufficient to adequately represent

the analytic functions, resulting in time-domain aliasing; and

(ii) F
(K,a)
m,k may not be correctly associated with the analytic

functions.

The proposed procedure is outlined in Algorithm 1. For a

given DFT length K, the algorithm finds the best association

of eigenvalues across the DFT bins via (25); it then evaluates

two metrics to test for the cases of time-domain aliasing and/or

an incorrect association, and if necessary iteratively increases

the size of the DFT. Across two successive DFT lengths K
2

and K, a metric ξ1 checks the consistency of associations.

If consistent, then a metric ξ2 captures aliasing and correct

association. In the time domain, ξ2 assesses the difference

between the tail ends of λ̂
(K)
m [τ ] and λ̂

(K/2)
m [τ ], which in the

case of analytic functions according to Theorem 2 should go

to zero as K →∞. In the frequency domain, ξ2 exploits the

fact that if F
(K,a)
m,k are not associated with analytic functions,

they can be sampled from piecewise analytic functions, which

for some derivative p <∞ will be discontinuous.

In the following we first discuss the metrics and then prove

that the proposed algorithm converges to the correct solution.

B. Time vs DFT Domain Approximation and Metrics

Ultimately, we are interested in the time domain eigenvalue

functions. From Theorem 1, we know that analytic eigenvalues

λm(z), m = 1, . . . ,M , exist for any analytic parahermitian

matrix R(z) that does not arise from multiplexed data. An-

alyticity implies that their time domain equivalent functions

λm[τ ] ◦—• λm(z) are absolutely convergent and Theorem 2

guarantees that a truncation λ̂
(N)
m [τ ] = p̃N [τ ]λm[τ ] provides

its best N th order approximation. Furthermore, its Fourier

transform λ̂
(N)
m (ejΩ) •—◦ λ̂(N)

m [τ ], converges uniformly, such

that

|λ̂(N)
m (ejΩ)− λm(ejΩ)| < ǫ ∀Ω

is achieved for an arbitrarily small ǫ by a sufficiently large N .

All of this follows directly from the analyticity of Λ(z).
The same cannot be said for the K-th order frequency do-

main interpolation function. If F
(K,a)
m,k are correctly associated,

then these will match the analytic eigenvalue λm(z) in the

sample points, i.e.

F
(K,a)
m,k = λm(ejΩk), Ωk = 2πk/K, k = 0, . . . , (K − 1) .

Since F
(K,a)
m,k is discrete, its time domain equivalent

f
(K,a)
m [τ ] ◦—• F (K,a)

m,k ,

f (K,a)
m [τ ] =

∞∑

µ=−∞

λm[τ −Kµ] , (26)

will be periodic analogously to (7). When the support of λm[τ ]
exceeds K — recalling that it is very likely an infinite Laurent

series — then (26) results in time domain aliasing. If we isolate

the fundamental period, indicated by {̂·}, using (8),

f̂ (K,a)
m [τ ] = p̃K [τ ]f (K,a)

m [τ ] , (27)

then F̂
(K,a)
m (ejΩ) •—◦ f̂ (K,a)

m [τ ] will match λm(ejΩ) in the

sample points but may deviate at other frequencies. Thus,

even if (25) provides the correct association, in the DFT-based

approach, F̂
(K,a)
m (ejΩ) does not converge uniformly towards

λm(ejΩ) as K increases: in the sample points, the approxima-

tion error is zero and F̂
(K,a)
m (ejΩ) converges instantly, while

at other frequencies this is not the case.

For a sufficiently large K, i.e. closely spaced sample points,

(25) will yield the correct association and our interpolant will

have an estimation error (due to truncation and aliasing) that

is less than some threshold. To find a small value of K that

satisfies such a threshold, we iteratively increase the DFT size

by a factor of two. While the specific factor for this increase is

somewhat arbitrary, selecting powers of two as DFT length K
is advantageous w.r.t. efficient DFT algorithms. Furthermore,

when calculating the EVD in each frequency bin for a K-

point DFT of R[τ ], half of the eigenvalues have already been

calculated during the previous iteration with DFT length K
2 ,

i.e.

F
(K)
m,2k = F

(K/2)
m,k ∀m = 1, . . . ,M, k = 0, . . . , (K2 − 1) .

To exploit this property, we assume in the rest of the paper

that K is even.

Consider the following metric

ξ1 =

M∑

m=1

K/2−1
∑

k=0

|F (K,a)
m,2k − F

(K/2,a)
m,k |2 (28)

where F
(K/2,a)
m,k and F

(K,a)
m,k are the associated sets from (25)

for the K
2 - and K-point DFTs. If, for ǫ1 a small constant
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numerically close to zero, we have that ξ1 > ǫ1 then the K-

point DFT has produced an association that differs from the

one for the K
2 -point DFT. As a result, at least the association

for K
2 is incorrect. Hence K

2 , and possibly K, is too small.

For ξ1 ≤ ǫ1, the smooth associations for both K
2 - and K-

point DFT sets are identical, and there is at least a chance that

the associations may be correct. If the associations are correct,

then the difference between the interpolants,

Θ(K)
m (ejΩ) = F̂ (K,a)

m (ejΩ)− F̂ (K/2,a)
m (ejΩ) , (29)

will converge to zero as K increases, since for sufficiently

large K, time-domain aliasing becomes negligible, and sub-

sequently Theorem 2 applies. Thus a correct association is a

necessary condition for Θ
(K)
m (ejΩ) to converge to zero as K

increases.

To measure the difference between the interpolants, recall

that K
2 is a power of two, i.e. even. The mth interpolants for

both sets have coefficient vectors fm,K/2 and fm,K similar to

(15) but with a subscript m = 1, . . . ,M as an index into the

particular function. The two vectors are related by

fm,K/2 =
(
IK/2 ⊗ [1 0]

)

︸ ︷︷ ︸

M1

fm,K , (30)

where ⊗ denotes the Kronecker product. Note that vectors of

exponentials akin to (12) can be similarly related via

eK/2(e
jΩ)=

[
0 IK/2+1 0

]

︸ ︷︷ ︸

M2

eK(ejΩ) , (31)

with 0 a (K2 +1)× LK
2

zero matrix. With this, we can denote

the pth derivative of the difference between the interpolants as

dp

dΩp
Θ(K)

m (ejΩ) = eHK(ejΩ)
(
√

1
KD

p
KPKTK −

√
2
KMT

2

·Dp
K/2PK/2TK/2M1

)
fm,K

= eHK(ejΩ)AKfm,K , (32)

where AK is defined by (32) and with PK , TK , and DK

according to (13), (14), and (18), and M1 and M2 as defined

in (30) and (31).

Using (32) and (19), the power of the pth derivative across

all M functions is

ξ
(p)
2 =

1

2π

M∑

m=1

π∫

−π

∣
∣
∣
∣

dp

dΩp
Θ(K)

m (ejΩ)

∣
∣
∣
∣

2

dΩ=
M∑

m=1

‖AKfm,K‖22,

(33)

which, for sufficiently large K, represents a measure of how

much aliasing has occurred. We will also demonstrate that ξ
(p)
2

can also capture the case of (25) not providing an association

with the analytic functions.

C. Convergence Proof

For p → ∞, we now want to show that ξ
(p)
2 → 0 for in-

creasing K iff F
(K,a)
m,2k is correctly associated with the analytic

eigenvalues. The ‘if’ part, or necessity, will be straightforward,

and the ‘only if’ part, or sufficiency, is more complicated. We

exploit the fact that clearly the samples F
(K,a)
m,k imply the exis-

tence of some continuous functions Φm(ejΩ), m = 1, . . . ,M ,

that suitably interpolate the given samples. Using the argument

that leads to (7) and (27), we have

f̂ (K,a)
m [τ ] = p̃K [τ ]

∞∑

ν=−∞

φm[τ − νK] , (34)

where φm[τ ] ◦—• Φm(ejΩ). Because there are infinitely many

ways in which aliasing in (34) could generate f̂
(K,a)
m [τ ], the

functions Φm(ejΩ) are not unique but (34) nevertheless holds

and, ultimately, our proof rests on evaluating f̂
(K,a)
m [τ ] and

not Φm(ejΩ).
We define the time domain equivalent to the cost function

in (29) as Θ
(K)
m [τ ] ◦—• Θ(K)

m (ejΩ),

Θ(K)
m [τ ] = f̂ (K,a)

m [τ ]− f̂ (K/2,a)
m [τ ]

= p̃K [τ ]
∞∑

ν=−∞

φm[τ−νK]− p̃K
2
[τ ]

∞∑

µ=−∞

{
φm[τ−2µK

2 ]

+ φm[τ−(2µ+1)K2 ]
}

(35)

= (p̃K [τ ]− p̃K
2
[τ ])

∞∑

ν=−∞

φm[τ−νK]

−p̃K
2
[τ ]

∞∑

µ=−∞

φm[τ−(2µ+1)K2 ] . (36)

For the expansion of f̂
(K/2,a)
m [τ ] in (35), components for

even and odd µ have been written explicitly. Thus, with
dp

dΩpΘ
(K)
m (ejΩ) •—◦ (−jτ)pΘ(K)

m [τ ] and using Parseval’s the-

orem, the cost function ξ
(p)
2 in (33) becomes

ξ
(p)
2 =

M∑

m=1

⌊K/2⌋
∑

τ=−⌊K/2⌋

|(−jτ)pΘ(K)
m [τ ]|2 . (37)

The two summation terms in (36), and hence (37), involve

masked and translated versions of φm[τ ] such that only

their tails are involved. In the case of a correct association,

Φm(ejΩ) = λm(ejΩ) is analytic and φm[τ ] ◦—• Φm(ejΩ)
absolutely convergent; hence for K → ∞, the tails of φm[τ ]

decay at least exponentially, and ξ
(p)
2 → 0 which proves

necessity.

For the sufficiency, note that the samples F
(K,a)
m,k come

from the analytic eigenvalue functions, but for a specific

value m = 1, . . . ,M do not necessarily stem from a single

eigenvalue function. Hence Φm(ejΩ) could be constructed

piece-wise from segments of several eigenvalue functions.

Whilst there might be pathological cases [33] where a function

that is constructed from piece-wise analytical segments is

infinitely differentiable, in general there will be a q such

that the q-th differential is discontinuous. Note that since the

functions Φm(ejΩ) are not unique, we are allowed a great deal

of choice in how they are constructed. Specifically, assume

that F
(K,a)
m,k is sampled from piece-wise analytic functions that

contain a finite number of isolated ‘switching’ points; these

points are the locations where we switch from one segment of

an eigenvalue function to another.
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Because the sampling points of F
(K/2,a)
m,k are subsampled by

a factor of two from those of F
(K,a)
m,k , we can say that both are

sampled from the same piece-wise analytic functions. Since

switching points can occur anywhere on an interval between

two bin frequencies, we assign the switching point to even

indexed frequency bins, such that they occur only at even

integer multiples of 4π
K , i.e., that for a switching point Ωℓ

Ωℓ ∈ { 4πkK , k = 0, . . . , (K2 − 1)} . (38)

The switching points can create discontinuities in Φm(ejΩ) or

in some q-th order derivative of this function. The latter occurs

if we switch at a point where the two eigenvalue functions have

the same value and the same i-th order derivative for 1 ≤ i <
q. Hence, for an incorrect association across the frequency bins

and for some q where 0 ≤ q <∞, the q-th order derivative of

Φm(ejΩ) can be constructed as a discontinuous function from

a finite number of piece-wise analytic segments.

In the first instance, we state for the number of switching

points:

Lemma 1 (Switching points of a discontinuous function):

A piece-wise analytic function on the unit circle with

discontinuities must possess at least two switching points.

Proof: See Appendix B. �

In the following w.l.o.g., we assume that Φm(ejΩ) possesses

the first of Q potential switching points at Ω1 = 0, which

coincides with ΩQ+1 = 2π (see Lemma 1). Therefore, we

define

Φm(ejΩ) =

Q
∑

ℓ=1

λµ(ℓ)(e
jΩ)Sm,ℓ(e

jΩ) , (39)

where λµ(ℓ)(e
jΩ) is the analytic eigenvalue from which the

ℓth segment of Φm(ejΩ) arises. In (39), w.l.o.g. µ(1) = m;

Sm,ℓ(e
jΩ) is a 2π-periodic switching function, which on the

interval 0 ≤ Ω ≤ 2π is given by

Sm,ℓ(e
jΩ) =

{
1 Ωℓ ≤ Ω < Ωℓ+1 ,
0 otherwise .

We first use (39) to show that the cost function in (33) will

not converge to zero if Φm(ejΩ) possesses a discontinuity,

i.e. a q = 0-th order non-differentiability, at any of the switch

points. Subsequently we show this is also true for q > 0.

Lemma 2 (Non-convergence for discontinuous functions):

The derivative cost function ξ
(p)
2 in (33) for K samples of

a discontinuous, piece-wise analytic function with a finite

number of potentially discontinuous but piece-wise analytic

segments remains finite as K →∞ and p ≥ 1.

Proof: We will investigate the terms (−jτ)φm[τ+T ] that make

up the cost function ξ
(p)
2 once (36) is inserted into (37). Their

Fourier transform

∞∑

τ=−∞

(−jτ)φm[τ + T ]e−jΩτ =
d

dΩ
Φm(ejΩ)ejΩT

= jT ejΩTΦm(ejΩ) + ejΩT Φ̇m(ejΩ) (40)

contains the first derivative Φ̇m(ejΩ) = d
dΩΦm(ejΩ),

Φ̇m(ejΩ)=

Q
∑

ℓ=1

λ̇µ(ℓ)(e
jΩ)Sm,ℓ(e

jΩ)

+ λµ(ℓ)(e
jΩ)

[
δ̄(Ω− Ωℓ)− δ̄(Ω− Ωℓ+1)

]

=

Q
∑

ℓ=1

λ̇µ(ℓ)(e
jΩ)Sm,ℓ(e

jΩ)

+
[
λµ(ℓ)(e

jΩℓ)− λµ(ℓ−1)(e
jΩℓ)

]
δ̄(Ω− Ωℓ) . (41)

In (41), δ̄(Ω) =
∑

ν δ(Ω − 2πν) is an impulse train4,

λ̇µ(ℓ)(e
jΩ) = d

dΩλµ(ℓ)(e
jΩ) is analytic, and λµ(0)(e

jΩ) =
λµ(Q)(e

jΩ) due to the cyclic nature of Φm(ejΩ). Therefore

the expression (40) splits into three terms, whose time domain

equivalents are

(−jτ)φ[τ + T ] = jT

Q
∑

ℓ=1

λµ(ℓ)[τ + T ] ∗ sm,ℓ[τ + T ]

+

Q
∑

ℓ=1

λ̇µ(ℓ)[τ + T ] ∗ sm,ℓ[τ + T ]

+

Q
∑

ℓ=1

[
λµ(ℓ)(e

jΩℓ)− λµ(ℓ−1)(e
jΩℓ)

]
· e−jΩℓ(τ+T ) , (42)

with λ̇µ(ℓ)[τ ] ◦—• λ̇µ(ℓ)(e
jΩ) the derivative of the µ(ℓ)th

eigenvalue, and sm,ℓ[τ ] ◦—• Sm,ℓ(e
jΩ).

The first two terms in (42) represent convolutions between

an absolutely convergent function, and the sinc function [41]

sm,ℓ[τ ] =
Ωℓ+1 − Ωℓ

π
δ[τ ] +

sin[(Ωℓ+1 − Ωℓ)τ ]

2πτ
,

which decays with 1
τ ; therefore both terms decay. Recall

from (38) that Ωℓ = 4πk
K and T = νK (k, ν ∈ Z,) so that

e−jΩℓ(τ+T ) = e−jΩℓτ . Then the last term in (42) contains non-

decaying complex exponentials that are phase-aligned. Since

in (37) both terms extend over an effective interval of K/2
each, the complex exponentials in (37) are mutually orthogonal

for all ℓ = 1, . . . , Q i.e. do not cancel.

Thus (37) is dominated by orthogonal complex exponentials

unless λµ(ℓ)(e
jΩℓ)−λµ(ℓ−1)(e

jΩℓ) = 0 is satisfied for all ℓ, in

which case Φm(ejΩ) must be continuous. If discontinuities

exist, then for some ℓ, λµ(ℓ)(e
jΩℓ) − λµ(ℓ−1)(e

jΩℓ) 6= 0,

i.e. their amplitude does not vanish, and the cost function ξ
(1)
2

therefore does not converge. �

Previously we argued that Φm(ejΩ) could have a finite

number of piecewise analytic segments but be discontinuous

in the q-th order derivative for some q where 0 ≤ q < ∞.

Lemma 2 considered the case when q = 0. Theorem 4 below

considers the general case.

Theorem 4 (Convergence): The identified association

F
(K,a)
µ,k across K bins is correct (i.e. represents sample

points of the analytic eigenvalues) iff ξ
(p)
2 , for p → ∞ and

sufficiently large value of K, is smaller than a specified,

sufficiently small threshold ǫ2, and the analytic eigenvalue

functions are such that it is not possible to form a function

4We assume that a Heaviside function u(t) can be differentiated as
d
dt

u(t) = δ(t), with δ(t) the Dirac impulse.



EIGENVALUE DECOMPOSITION OF A PARAHERMITIAN MATRIX: EXTRACTION OF ANALYTIC EIGENVALUES 9

TABLE I
EXAMPLE FOR ξ

(p)
2 WHEN SAMPLING FROM THE NON-DIFFERENTIABLE

FUNCTIONS IN FIG. 1(B) USING DIFFERENT DFT LENGTHS K .

p K=4 K=8 K=16 K=32 K=64 Analytic
K=4

1 1.12500 1.92614 2.52055 4.50133 7.51843 2.125

2 1.61e+1 2.84e+2 3.15e+3 1.01e+5 3.05e+6 32.125

3 2.56e+2 5.69e+4 9.31e+6 4.17e+9 1.9e+12 512.125

that is a piecewise combination of two eigenvalues and this

function be infinitely differentiable.

Proof: From above, it is clear that ξ
(p)
2 necessarily must

converge to zero with increasing K if the sample points in

F
(K,a)
m,k and F

(K/2,a)
m,k are correctly associated with the analytic

eigenvalues. It remains to be shown that convergence is also

sufficient for a correct association.

If the association is not correct, we know that, for some q
where 0 ≤ q <∞, the q-th order derivative of Φm(ejΩ) is dis-

continuous but consists of a finite number of piecewise analytic

segments. If the functions Φm(ejΩ) possess discontinuities

only for q > 0, then dr

dΩr λµ(ℓ)(e
jΩℓ) = dr

dΩr λµ(ℓ−1)(e
jΩℓ)

∀ℓ = 1, . . . , Q and r = 0, . . . , (q − 1). The case q = 0
is covered by Lemma 2. Thus we can continue to differen-

tiate Φ̇m(ejΩ) in (41) q-fold until Dirac impulses appear in
dq+1

dΩq+1Φm(ejΩ). Consider the metric in (33). For p > q, using

the chain rule we have that

dp

dΩp
Θ(K)

m (ejΩ) =
dp−q−1

dΩp−q−1

dq+1

dΩq+1
Θ(K)

m (ejΩ) ,

where any of the functions dq

dΩq Φm(ejΩ) contributing to
dq

dΩq Θ
(K)
m (ejΩ) via (37) can have a finite number of discon-

tinuities but otherwise piecewise analytic segments. Hence

Lemma 2 applies and ξ
(p)
2 will diverge for p ≥ q+1. Overall,

therefore ξ
(p)
2 → 0 for p ≥ q + 1 and K → ∞ iff the

association is correct. �

Example 1. When sampling from the analytic and spectrally

majorised functions in Fig. 1(a) and (b) respectively, we obtain

the metrics ξ
(p)
2 shown in Tab. I. For the spectrally majorised

case, we sample from continuous but non-differentiable func-

tions; the resulting values for ξ
(p)
2 , given in the left columns

of Tab. I, diverge as K increases. In contrast, when sampling

from the analytic functions, ξ
(p)
2 has finite values for K = 4,

displayed in the right-most column of Tab. I; for K > 4, in

the analytic case ξ
(p)
2 drops close to machine precision.

Example 2. We show an example for K = 64 sample points

taken from the spectrally majorised functions in Fig. 1(b).

There, at Ω = π, di(e
jΩ), i = 1, 3 are continuous but not

differentiable and thus discontinuous for q = 1, while d2(e
jΩ),

is differentiable once and therefore discontinuous only for

q = 2. The interpolants for K = 64 and K/2 = 32 are shown

in Fig. 5(a). The resulting oscillations in the interpolants

increase from K/2 to K, and more so for m = 1, 3 approx-

imating functions that are discontinous already for q = 1.

Thus, the differences Θ
(K)
m (ejΩ) in (29) and their derivatives

dp

dΩpΘ
(K)
m (ejΩ) contribute energy to the metric ξ2 in (33); this

energy rises as the derivative order p increases, as Fig. 5(b)

for p = 0 and Fig. 5(c) for p = 1 attest.

(a)

(b)

(c)

Fig. 5. (a) Interpolants for spectrally majorised association of sample points
for the eigenvalues shown in Fig. 1(b) for K = 32 and K = 64; markers

indicate the positions of sample points F
(K)
m,k

; (b) difference between the

interpolants in (a) according to (29), and (c) the first order differentiation of
this difference contributing to (33).

V. IMPLEMENTATION ISSUES

For a practical realisation of the proposed procedure in Al-

gorithm 1, we need to address three issues. Sec. V-A presents

some consequences of having to work with a finite derivative

order p. Sec. V-B discusses replacing the exhaustive search in

(25) by an iterative Viterbi-type maximum sequence likelihood

estimator (MLSE) [42], which evolves associations frequency

bin by frequency bin. The MLSE requires a modification to

the smoothness metric to allow for this iteration and this is

presented in Sec. V-C. Sec. V-D defines the evolution of a set

of paths that is ordered in terms of smoothness, and Sec. V-E

discusses the pruning approach. The algorithm is summarised

in Sec. V-F.

A. Finite Differentiation Order p

For the above convergence proof, specifically Theorem 4,

we require p > q, i.e. the derivative power p in the metric

to exceed the derivative q in which the piecewise analytic

functions Φm(ejΩ) are discontinuous. We generally do not

know this value q, but if it is the case that p < q, at least we

know that the Φm(ejΩ) are continuous and differentiable up to

order p. Then for a sufficient large p, the resulting assignment

is, for practical purposes, a good approximation to the analytic

functions.

B. Maximum Likelihood Sequence Estimation

Recall that the challenge is to reorder K sample points

of M eigenvalues, F
(K)
m,k , into sample points F

(K,a)
m,k that are

maximally smoothly associated across K frequency bins. An
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example for the eigenvalues in Fig. 1(a) with K = 8 was

shown in Fig. 1(c).

Following the philosophy behind the Viterbi algorithm, the

MSLE evaluation of (25) therefore operates on the M × K

sample points F
(K)
m,k , k = 0, . . . , (K − 1), m = 1, . . . ,M .

Starting with the first bin and a single path p1,1 = 1, a set of

paths is grown from bin to bin. In each iteration, the fitness

of each path is evaluated using a smoothness metric; since

(24) requires a path of length K, we will derive a modified

smoothness metric in Sec. V-C below for a reduced set of

1 < J ≤ K sample points. At the end of an iteration, the

set of paths is pruned to only retain the best ρmax distinct

paths. If path metrics exceed the smoothness of the spectrally

majorised solution, then these are also pruned. After the Kth

bin, the path p1,K is the one with the lowest metric, indicating

that the indexing captured in p1,K will map {F (K)
m,k } to the set

{F (K,a)
m,k } in (25) such that it has the smoothest association

across all bins.

Convergence to the correct solution, i.e. the maximally

smooth association across frequency bins, depends on the

number of paths ρmax that is retained. There is however a

trade-off, and lower values for ρmax that make the algorithm

tractable may not always lead to the desired solution. However,

as outlined in Algorithm 1, the metrics ξ1 and ξ2 will detect

this, and rerun the association for (25) with an increased

number of bins K. For a sufficiently high value of K, the

analytic solution will be sufficiently smooth with respect to

the sampling grid such that a decreasingly smaller number

of retained paths, ρmax, will, in practice, suffice to identify

the association belonging to the maximally smooth, analytic

solution.

To iteratively evolve associations of eigenvalues across

bins, we start with a set of possible associations for the

first J , 1 ≤ J < K, bins. To follow the terminology of

Viterbi’s MLSE approach [42], we define each such possible

and distinct association as one path. With respect to the

example in Fig. 1(c), one path represents one way to draw

M curves through the first J bins, using all available M
sample points in each bin. This set of paths PJ is ordered,

based on a smoothness metric that sums over the M Dirichlet

interpolations that can be created from the associations in

each path. The iteration then adds the (J + 1)th bin into the

consideration for associations, thus creating the set PJ+1.

The approach terminates by extracting the smoothest pos-

sible path from set PK once all K bins have been processed.

As an initialisation, the initial set P1 only contains a single

association; w.l.o.g. we select majorised eigenvalues in this

first bin, which after completion only impacts on the ordering

but not the smoothness of the extracted associations. Note that

we do not attempt to order the resulting eigenvalues but merely

make them analytic. In general, the EVD does not provide any

information that would imply an ordering. Clearly they could

be ordered using some metric if desired. Using total energy

would result in an ordering in the same spirit as is often used

for the conventional EVD.

The number of paths in each set PJ , i.e. the cardinality |PJ |,
grows with J . Since adding a bin creates M ! new possibilities,

we find that without further intervention, |PJ | ≤ (M !)J−1,

with equality in the case that none of the eigenvalues possesses

an algebraic multiplicity greater than one. In order to retain

a workable number of paths, the set PJ therefore requires

pruning after each iteration.

C. Missing Sample Problem / Incomplete Sample Set

The proposed iterative MLSE algorithm adds a J th bin to

associations that have already been assessed over the previous

J − 1 bins, with 1 < J ≤ K. Therefore, we need to

measure the smoothness of associations across these first J
frequency bins. Since we do not yet know the associations of

the remaining K−J sample points, we assume that we select

the values in those DFT bins such that they offer the smoothest

possible interpolation. For the purpose of this section, we

only consider a single function and hence omit the function

index m. Thus, we denote the first J sample points of F
(K)
k ,

k = 0, . . . , (J − 1), as a known parameter vector fJ|K , and

the remaining K − J parameters as a vector of unknowns,

x ∈ R
K−J , such that fTK = [fTJ|K , xT]. In other interpolation

contexts, the challenge of determining x has been described

as the ‘missing samples problem’ [43], [44].

The direct optimisation of

χ(P ) = min
x

[fTJ|K xT]C
(P )
K

[
fJ|K
x

]

, (43)

can be performed by standard least-squares techniques [28],

[29]. The matrix C
(P )
K in (43) is partitioned s.t.

C
(P )
K =

[
C1 C2

CT
2 C4

]

, (44)

with C1 ∈ R
J×J and all other matrices of appropriate

dimensions, which leads to

χ(P ) = fTJ|K
(
C1 −C2C

−1
4 CT

2

)
fJ|K , (45)

involving the Schur complement [46] of C
(P )
K . Since according

to (22) and (23) Ci, i = 1, 2, 4, only depend on a DFT matrix

and the constants J and K, the Schur complement can be

precomputed. Nonetheless, for J ≤ K, the inversion of C4

can be computationally costly and challenging due to the poor

conditioning of C
(P )
K . Note this is the approach that was used

in [27], [28] using a minimum variance distortionless response

approach [47]. For this reason, the following theorem proposes

an alternative route to the evaluation of (43).

Theorem 5 (Smoothness for Missing Samples Problem):

The cost in (43) for the smoothest interpolation through

J ≤ K sample points can be calculated via ‖R2fJ|K‖22,

where R2 is the lower right-hand J ×J-dimensional partition

of R obtained by the QR decomposition [46]

D
1
2WH

K = Q

[
R1 R12

0 R2

]

, (46)

where D =
∑

p D̃p,K .

Proof. We provide a shortened and simplified version of the

analysis in [29], which avoids a Cholesky decomposition step.

Recall that the matrix C
(P )
K ∈ R

K×K is symmetric and
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circulant, and therefore Töplitz. As such, we can reorganise

(44) as

C
(P )
K =

[
C1 C2

CT
2 C4

]

=

[
C4 CT

2

C2 C1

]

(47)

without affecting the overall matrix. With (47), (46), and the

remaining submatrices of R in (46) of appropriate dimensions,

we can equate
[

C4 CT
2

C2 C1

]

=

[
RH

1 R1 RH
1 R12

RH
12R1 RH

12R12 +RH
2 R2

]

.

Thus, the Schur complement C1 −CT
2 C

−1
4 C2 simplifies to

C1 −CT
2 C

−1
4 C2 = RH

12R12 +RH
2 R2

−RH
12R1

(
RH

1 R1

)−1
RH

1 R12 (48)

= RH
2 R2 .

Since C
(P )
K is full rank, R1 in (48) is invertible. �

Theorem 5 also holds even if only a particular derivative

power is used to calculate smoothness according to (21), since

the matrix Cp,K will have a rank of at least (K − 1), such

that R1 remains invertible for J < K, while for J = K the

Schur complement is no longer required.

Compared to previous efforts in [27], [28], the approach via

Theorem 5 and the QR decomposition of D
1
2WH

K offers a

lower cost and avoids conditioning problems associated with

any matrix inversion by performing a well-conditioned QR

decomposition. Further, since we operate with a fixed K but

variable J , we only need to calculate the QR decomposi-

tion once, and only change its partitioning to determine the

smoothness cost in (45). The matrix multiplication R2fJ|K
can exploit the sparsity of the upper triangular R2.

Example. As an example for the efficacy of using the power

in the derivatives of the interpolation, we take K = 8 samples

of the raised cosine function λ(ejΩ) = 1 + cosΩ, whose

power for every derivative p ∈ N is σ(p) = 1
2 . Tab. II shows

values for χp, p = 1, . . . , 5 obtained from a limited sample

set based on the J first sample points, with J = 1, . . . ,K.

For a single sample point J = 1, the smoothest interpolation

is a constant function, whose every derivative will be zero.

If we use all sample points, J = K, in this case we have

a complete representation of λ(ejΩ) and χp = σ(p). For

an incomplete sample set, J < K, although we can find

interpolations that are smoother than the actual function we

have χp → σ(p) for both J → K and p → ∞. For

a comparison to other interpolation methods, e.g. [44], that

are computationally cheaper but inaccurate in assessing the

smoothness as defined here, please see [45].

D. Set of Ordered Paths

Let pρ,J be a J-dimensional vector of integer indices

1, 2, . . . ,M ! labelling the permutations that create an associ-

ation for M sample points across the first J < K bins. These

labels are lexicographically ordered relative to the majorised

sorting of eigenvalues within each bin. As such, pρ,J defines

one possible association or path for these first M × J sample

points, with ρ ∈ N the path index, ρ = 1, . . . , |PJ |.

TABLE II
POWER IN pTH DERIVATIVE FOR K = 8 BASED ON INTERPOLATION OVER

J = 1 . . .K SAMPLE POINTS.

χp

J p = 1 p = 2 p = 3 p = 4 p = 5

1 0.0000 0.0000 0.0000 0.0000 0.0000
2 0.0671 0.1458 0.2440 0.3253 0.3752
3 0.1155 0.1788 0.2505 0.3271 0.3957
4 0.1160 0.1870 0.2729 0.3551 0.4169
5 0.1733 0.2698 0.3615 0.4279 0.4666
6 0.3388 0.4119 0.4584 0.4823 0.4930
7 0.4643 0.4861 0.4952 0.4985 0.4995
8 0.5000 0.5000 0.5000 0.5000 0.5000

TABLE III
POSSIBLE PERMUTATIONS OF EIGENVALUE INDICES WITHIN ONE BIN FOR

M = 3.

label indexing m

1 1 2 3
2 1 3 2
3 2 1 3
4 2 3 1
5 3 1 2
6 3 2 1

Example. For M = 3, Tab. III shows the M ! = 6 possible

permutations as index combinations for the eigenvalues λm

within any one bin. This table represents a code book, which

links an integer label, forming one entry of pρ,J , to a specific

index permutation relative to a spectrally majorised ordering.

The set PJ is ordered in terms of the smoothness that its as-

sociations afford. If F̂
(J|K)
m (ejΩ,pρ,J ), m = 1, . . . ,M are the

M functions interpolating the J sample points associated by

path pρ,J , and the vectors fm,J|K(pρ,J ) ∈ R
J , m = 1, . . . ,M ,

hold the sampling points of each of these M functions, then

the smoothness of the path pρ,J is defined as the cumulative

smoothness of the functions F̂
(J|K)
m (ejΩ,pρ,J ). Therefore the

smoothness is measured as

χ(P )(pρ,J ) =
M∑

m=1

‖R2 fm,J|K(pJ,K)‖22 (49)

according to Theorem 5. Using (49), the paths in PJ are

ordered such that

χ(P )(pρ,J ) ≤ χ(P )(pρ+1,J ) , ρ = 1, . . . , |PJ | ,

i.e., given a specific maximum derivative order P , the paths

are ordered in descending smoothness.

Example. Fig. 6 shows, for J = 3, the analytic solution

that is given by the path p1,3 = [1, 1, 2]T. The spectrally

majorised solution has the path p2,3 = [1, 1, 1]T. The mod-

ified Dirichlet interpolations arising from the two paths are

shown in Fig. 6. If we take derivatives up to the P = 5th

order to measure smoothness, we obtain χ(5)(p1,3) = 0.4978
and χ(5)(p2,3) = 0.6700. Note from the interpolated curves in

Fig. 6 that arc length, as used to identify an analytic solution

in [20], would here lead to a smaller value for the association

in (b) compared to (a); similarly, if the derivative order is

chosen very low, the path ordering based on smoothness

may not be as intended, as e.g. χ(1)([1, 1, 2]T) = 0.1649
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(a) (b)

Fig. 6. Example for interpolated functions F̂
(3|8)
m (ejΩ,pi,3) for two

different associations (or ‘paths’), (a) p1,3 and (b) p2,3 based on the first
J = 3 of K = 8 sample points shown in Fig. 1(c).

while χ(1)([1, 1, 1]T) = 0.0721 would order the spectrally

majorised association ahead of the analytic one.

E. Path Pruning

The motivation behind using a Viterbi-style MLSE approach

is that it is deemed sufficient to only retain a maximum

permissible number ρmax of paths at any one time. This leads

to a pruning of the set PJ to only retain the ρmax best paths,

such that all paths pρ,J , ρ > ρmax are discarded from the set

and hence |PJ | ≤ ρmax. Note that the set of retained paths

can be smaller than ρmax, since, e.g., |P1| = 1. Similarly, an

algebraic multiplicity of eigenvalues greater than one will lead

to a number of identical paths even though their labels differ;

such paths must be purged from the set PJ in order to retain

distinct solutions prior to any pruning. For example consider

the entries in Tab. III for the case when λ2 = λ3 say. In

this case, permutations ‘1’ and ‘2’ lead to the same sequence.

Similarly the permutations ‘3’ and ‘5’ are equivalent, as are

the permutations ‘4’ and ‘6’.

The set of paths PJ can potentially be pruned further. The

path psm,K = [1, 1, . . . , 1]T ∈ Z
K describes the spectrally

majorised selection. Since we are looking for an association

of sample points that is at least as smooth as that given by the

spectrally majorised eigenvalues, we can demand that

χ(P )(pρ,J ) ≤ χ(P )(psm,K) ∀ pρ,J ∈ PJ , (50)

and thus potentially shrink the set PJ further to satisfy (50).

F. Overall Algorithm

An implementation of Algorithm 1 is thus possible if the

MLSE approach replaces the exhaustive search to solve (25).

The correctness and precision of this association is iteratively

checked by the metrics ξ1 in (28) and ξ
(p)
2 in (33) until suitable

thresholds are reached. Unfortunately, the MLSE does not

scale particularly well with either the DFT length (related

to the approximation order) or the spatial dimension of the

parahermitian matrix. This issue would need to be addressed

in scalable implementations by (i) local interpolations w.r.t. to

the missing samples problem, and (ii) considering permuta-

tions only between neighbouring, ordered eigenvalues. This,

however, is beyond the scope and space of this paper.

(a)

(b)

Fig. 7. Eigenvalues extracted by (a) the DFT-based approach in [26] and (b)
SBR2 [5], [8].

VI. SIMULATIONS AND RESULTS

A. Numerical Example

The CSD matrix R(z) used to generate Fig. 1 possesses

the analytic eigenvalues λ1(z) = −j 14z+1+ j 14z
−1, λ2(z) =

1
4z

2 + 1
2 + 1

4z
−2, and λ3(z) = − 1

4z + 1
2 − 1

4z
−1. While

the approach in [26] often succeeds in extracting analytic

eigenvalues if the DFT length is selected sufficiently long,

this is not guaranteed to occur [48]. The association between

bins in [26] is driven by the examination of the eigenvectors,

and here the algebraic multiplicity of three at Ω = π misleads

the selection. This results in two of the eigenvalues λ̂′
m(z),

m = 2, 3 in Fig. 7(a) being incorrectly associated at Ω = π,

and subsequently having to approximate discontinuities at

Ω = 2π. In contrast, the proposed algorithm terminates after

i = 2 iterations, with K2 = 256 being the same DFT lengths

as used for Fig. 7(a). By appropriately trimming trailing

zeros [49]–[52], the extracted estimates λ̂m(z), m = 1, 2, 3,

match the above ground truth (i) in order N = 4, and (ii)

close to machine precision with ξ
(3)
2 < 10−15.

For reference, Fig. 7(b) also includes results for the SBR2

algorithm [5], [8], which has been shown to converge towards

spectrally majorised eigenvalues [14]. The approximation

of non-differentiable points is evident on closer inspection,

e.g. near the algebraic multiplicity at Ω = π, which in this

case requires a high approximation order with N = 126.

B. Ensemble Results with Known Ground Truth

Using the source model in Fig. 2 with Ls = M = 4,

randomised innovation filters gℓ[n] and paraunitary mixing

matrices H[n] both of order L = 0, . . . , 12, we build an en-

semble of 13000 different CSD matrices R(z). The innovation

filters are constructed from uncorrelated complex Gaussian

coefficients, with the filters normalised such that the signals

sℓ[n], ℓ = 1, . . . , 4, have unit power. Varying L results in

orders for the eigenvalues λm(z) that range from 0 to 24.
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Fig. 8. Example for eigenvalues produced by the randomised source model
for L = 12.

Fig. 9. Mean µ and standard deviation σ for the order Ord{·} of the extracted

eigenvalues with the proposed method, λ̂m(z), and spectrally majorised

values d̂m(z) estimated by SBR2 [8] and SMD [12].

An example for the eigenvalues produced by this approach is

shown in Fig. 8.

The proposed approach yields estimates λ̂m(z) with the

correct polynomial order and ξ
(3)
2 < 10−15 in all cases,

that match the correct values close to machine precision. In

Fig. 9, these are compared to the orders of the estimated

eigenvalues d̂m(z) extracted by SBR2 [8] and SMD [12].

The graphs show the mean and standard deviation of the

order of d̂m(z) obtained across the ensemble. Both SBR2

and SMD show similar results, with SMD providing generally

a lower order and a smaller spread of results compared to

SBR2. Since both algorithms strive for spectral majorisation,

their approximation of non-differentiable points leads to orders

that are on average an order of magnitude above those of

the analytic eigenvalues obtained with the proposed method,

except for L = 0, where all approaches reduce to the standard

EVD of a non-polynomial matrix. Also note that the proposed

scheme extracts the correct order with zero standard deviation

across the ensemble.

The execution time that is expended to reach the results in

Fig. 9 under Matlab R2016b on an 1.1GHz Intel Celeron CPU

is summarised in Fig. 10. The SBR2 algorithm is permitted

a maximum of 500 iterations, and the faster converging

SMD algorithm a maximum of 200 iterations. Despite its

considerably higher per-iteration cost [12], SMD reaches its

result generally faster than SBR2. For both algorithms, the cost

depends on the difficulty to approximate a specific ensemble

probe, resulting in a distribution of costs for each simulated

order for the ground truth eigenvalues. For the proposed

Fig. 10. Computational cost of the proposed method compared to SBR2 [8]
and SMD [12] for the experiment in Fig. 9, showing the median, as well as
the 25% and 75% percentiles.

Fig. 11. Example for spectrally majorised eigenvalues λm(ejΩ), m = 1 . . . 4
generated by the source model in [5].

algorithm, the cost does not rise strictly monotonously with

the order of the ground-truth eigenvalues, but depends on the

DFT length that is required. As a result, the cost contains

‘steps’ roughly where a doubling of the DFT length occurs,

subject to a small variability that can be observed via the

quartiles of the cost distribution in Fig. 10. In general however,

the proposed algorithm’s lower approximation order noted in

Fig. 9 translates into a significantly faster execution time.

To demonstrate how the proposed algorithm behaves if

the ground truth parahermitian matrix possesses spectrally

majorised eigenvalues, we modify the randomised source

model of Fig. 2 akin to [12]. There, a gain control spectrally

majorises the ground truth eigenvalues such that λm(ejΩ) ≥
λm+1(e

jΩ) ∀Ω and m = 1 . . . (M − 1); limiting the radii

of zeros in the innovation filter Gℓ(z) in (2) contains the

dynamic range of the functions. Nonetheless, the dynamic

range of the eigenvalues can be significant, as shown for the

example in Fig. 11, where Ls = 4 and the order of λm(z) is

Ord{λm(z)} = 6.

Fig. 12 shows the ensemble results for the order of the

estimated eigenvalues. For SBR2, SMD, and the proposed

approach, the time-domain coefficients of the eigenvalues are

truncated at -100dB, which due to the high dynamic range and

hence fast decay may lead to estimation orders that are lower

than the ground truth. In this spectrally majorised case, SBR2

and SMD may be expected to perform similar to the proposed

method, but rounding errors due to internal truncation of

the estimated paraunitary matrices occur [5], [8], [12] and

may lead to error propagation. This does not occur in the

proposed approach, which only operates on the eigenvalues
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Fig. 12. Mean µ and standard deviation σ for the order Ord{·} of

the extracted eigenvalues with the proposed method, λ̂m(z), and d̂m(z)
estimated by SBR2 [8] and SMD [12], for simulations where the ground-
truth eigenvalues are spectrally majorised.

Fig. 13. Computational cost of the proposed method compared to SBR2 [8]
and SMD [12] for the experiment in Fig. 12, showing the median, as well as
the 25% and 75% percentiles.

and does not carry the paraunitary matrices. Even though the

approximation order is not as impressively reduced as in the

case of overlapping eigenvalues in Fig. 9, there is a significant

advantage for the proposed approach evident from Fig. 12,

particularly as the order of the ground truth eigenvalues grows.

The execution time for the ensemble results in Fig. 12 are

contained in Fig. 13. Since the proposed approach typically

extracts eigenvalues of lower order than SBR2 and SMD, there

also is significant advantage in execution time. This is due to

the moderate dimension M = 4; recall from Sec. V-F that the

algorithm does not scale well w.r.t. the spatial dimension M
and, to a lesser extent, the DFT length K.

VII. CONCLUSIONS

We have motivated the need to extract analytic eigenvalues

from a parahermitian matrix using a DFT domain algorithm

that relies on the eigenvalues only. For a given DFT length,

a novel cost function drives the extraction of the smoothest

possible interpolation across frequency bins. An algorithm

with proven convergence iteratively adjusts the DFT lengths

until a polynomial approximation is found that generates

sufficiently small aliasing and truncation errors to satisfy a

predefined approximation error. In practice, we employ an

MLSE to extract the analytic eigenvalues; the algorithm still

does not scale particularly well with the dimensions of a

parahermitian matrix. Nonetheless, we have demonstrated that

the algorithm can provide significant order reductions where

the ground truth eigenvalues are not spectrally majorised; even

in the case of spectrally majorised eigenvalues, the simulations

suggest that the proposed algorithm is beneficial in reducing

the order of the extracted Laurent polynomials w.r.t state-of-

the-art algorithms.

Based on correctly associated eigenvalues, it is thereafter

possible to extract analytic eigenspaces or eigenvectors [53],

enabling significantly lower-order subspace decompositions

than state-of-the-art algorithms such as SBR2 [5], [8] and

SMD [12] for applications such as broadband angle of arrival

estimation [54], broadband beamforming [2], source separa-

tion [3], speech enhancement [55], or MIMO precoding and

equalisation [56]–[59]. Since eigenvectors generally possess

a greater volatility compared to eigenvalues, particlarly when

eigenvalues are closely spaced [46], [60], it will be important

to base this extraction on associations derived from the more

reliable eigenvalues as proposed and demonstrated in this

paper.
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APPENDIX

A. Proof of Theorem 2: Laurent polynomial approximation

Proof. We consider one eigenvalue λ(z) in Λ(z). Because of

its analyticity, it can be represented as

λ(z) =

∞∑

n=−∞

cnz
−n ,

with some coefficients cn ∈ C. For its approximation λ̂(N)(z),
we employ a Laurent polynomial

λ̂(N)(z) =

N/2
∑

n=−N/2

ĉnz
−n

of even order N . Evaluating the least squares approximation

error on the unit circle, z = ejΩ, yields

ξ =
1

2π

π∫

−π

|λ(ejΩ)− λ̂(N)(ejΩ)|2dΩ

=

N/2
∑

n=−N/2

|cn − ĉn|2 + 2

∞∑

n=N/2+1

|cn|2 ,
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where we have exploited 1
2π

∫ π

−π
ejΩndΩ = δ(n), ∀n ∈ Z, and

the parahermitian property of λ(z), s.t. c−n = c∗n. Hence,

min ξ ←→ ĉn = cn ∀ |n| ≤ N
2 ,

i.e., λ̂(N)(z) is indeed a truncation of λ(z). �

B. Proof of Lemma 1: Switching points of a discontinuous

function

Proof: Assume that Φm(ejΩ) comprises two analytic segments

λ1(e
jΩ) and λ2(e

jΩ), with a switching point or discontinuity

at Ω1, where w.l.o.g. Ω1 6= 0 i.e.,

Φm(ejΩ) =

{
λ1(e

jΩ), 0 ≤ Ω < Ω1 ,
λ2(e

jΩ), Ω1 ≤ Ω < 2π .

Due to its 2π periodicity, the two segments also meet at Ω = 0.

To be analytic and therefore infinitely differentiable at Ω = 0,

we require

lim
Ω→0+

dp

dΩp
λ1(e

jΩ) = lim
Ω→0−

dp

dΩp
λ2(e

jΩ) ∀p ∈ N . (51)

Since analytic functions are unique [40], this can only be sat-

isfied if λ1(e
jΩ) = λ2(e

jΩ), i.e. there cannot be any switching

point at Ω1 either. If (51) is violated for any differentiation

order p, then a second switching point has occurred at Ω = 0.
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