Track 2 Computation and resource constrained sensing

WP2.1 Resource constrained smart sensor systems
Our aim is to co-design algorithmic hardware and software approximations and optimizations to maximise throughput and minimise power consumption for signal and image analysis on single sensor and multi-sensor networks.

Approximation techniques can be roughly divided into algorithmic (e.g. stochastic optimization, sketching, dimensionality reduction), which have theoretical characterizations, and software/hardware  (e.g. decreasing data resolution, voltage and frequency scaling, memoisation), which are usually applied ad-hoc  without  guarantees.

We propose to formalise the error impact of low-level hardware and software approximations, integrating this knowledge in high-level analytics and applying synergistic approximations throughout the implementation stack. The exemplary applications will include 3D scene mapping through complex media and target localisation within a sensor network.

WP2.2 Reconfigurable signal processing
Most signal processing systems dispose of information along the processing chain. The benefits include: reduced communications, computational complexity and memory requirements. However, this “lost” information may be valuable and worth recovering: (i) when the system must be rapidly reconfigured beyond its intended use to address an unforeseen and imminent threat; (ii) for post-engagement, as part of a forensic analysis, to extract specific information tailored to evolving mission goals. In this WP we will consider the fundamental limits of such information recovery, active steps that can be put in place to facilitate it and the developments of algorithms to perform the necessary secondary inference.